ﻻ يوجد ملخص باللغة العربية
We have studied the island size distribution and spatial correlation function of an island growth model under the effect of an elastic interaction of the form $1/r^{3}$. The mass distribution $P_n(t)$ that was obtained presents a pronounced peak that widens with the increase of the total coverage of the system, $theta$. The presence of this peak is an indication of the self-organization of the system, since it demonstrates that some sizes are more frequent than others. We have treated exactly the energy of the system using periodic boundary conditions which were used in the Monte-Carlo simulations. A discussion about the effect of different factors is presented.
We introduce an algorithm for treating growth on surfaces which combines important features of continuum methods (such as the level-set method) and Kinetic Monte Carlo (KMC) simulations. We treat the motion of adatoms in continuum theory, but attach
In this paper we present a classical Monte Carlo simulation of the orthorhombic phase of crystalline polyethylene, using an explicit atom force field with unconstrained bond lengths and angles and periodic boundary conditions. We used a recently deve
We present the results of Monte Carlo simulations of the magnetic properties of a model for a single nanoparticle consisting in a ferromagnetic core surrounded by an antiferromagnetic shell. The simulations of hysteresis loops after cooling in a magn
We present results for the solution of the large polaron Frohlich Hamiltonian in 3-dimensions (3D) and 2-dimensions (2D) obtained via the Diagrammatic Monte Carlo (DMC) method. Our implementation is based on the approach by Mishchenko [A.S. Mishchenk
We study the elasticity of perfect 4He at zero-temperature using the diffusion Monte Carlo method and a realistic semi-empirical pairwise potential to describe the He-He interactions. Specifically, we calculate the value of the elastic constants of h