ﻻ يوجد ملخص باللغة العربية
We study the elasticity of perfect 4He at zero-temperature using the diffusion Monte Carlo method and a realistic semi-empirical pairwise potential to describe the He-He interactions. Specifically, we calculate the value of the elastic constants of hcp helium C_{ij} as a function of pressure up to 110 bar. It is found that the pressure dependence of all five non-zero C_{ij} is linear and we provide accurate parametrization of each of them. Our elastic constants results are compared to previous variational calculations and low-temperature measurements and in general notably good agreement is found among them. Furthermore, we report T = 0 results for the Gruneisen parameters, sound velocities and Debye temperature of hcp 4He. This work represents the first of a series of computational studies aimed at thoroughly characterizing the response of solid helium to external stress-strain.
We have investigated the ground state properties of solid $^4$He with the Shadow Path Integral Ground State method. This exact T=0 K projector method allows to describes quantum solids without introducing any a priori equilibrium position. We have fo
We present results of Diffusion Monte Carlo calculations for a system of solid ortho-D_2 at different densities, for pressure ranging from 0 up to 350MPa. We compare the equation of state obtained using two of the most used effective intermolecular p
We probe the superconducting gap in the zero temperature ground state of an attractively interacting spin-imbalanced two-dimensional Fermi gas with Diffusion Monte Carlo. A condensate fraction at nonzero pair momentum evidences a spatially non-unifor
We use the diffusion quantum Monte Carlo (DMC) method to calculate the ground state phase diagram of solid molecular hydrogen and examine the stability of the most important insulating phases relative to metallic crystalline molecular hydrogen. We de
An ab-initio method for determining the dynamical structure function of an interacting many--body quantum system has been devised by combining a generalized integral transform method with Quantum Monte Carlo methods. As a first application, the coher