ترغب بنشر مسار تعليمي؟ اضغط هنا

The elastic constants of solid 4He under pressure: a diffusion Monte Carlo study

144   0   0.0 ( 0 )
 نشر من قبل Claudio Cazorla
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the elasticity of perfect 4He at zero-temperature using the diffusion Monte Carlo method and a realistic semi-empirical pairwise potential to describe the He-He interactions. Specifically, we calculate the value of the elastic constants of hcp helium C_{ij} as a function of pressure up to 110 bar. It is found that the pressure dependence of all five non-zero C_{ij} is linear and we provide accurate parametrization of each of them. Our elastic constants results are compared to previous variational calculations and low-temperature measurements and in general notably good agreement is found among them. Furthermore, we report T = 0 results for the Gruneisen parameters, sound velocities and Debye temperature of hcp 4He. This work represents the first of a series of computational studies aimed at thoroughly characterizing the response of solid helium to external stress-strain.

قيم البحث

اقرأ أيضاً

174 - M. Rossi , R. Rota , E. Vitali 2007
We have investigated the ground state properties of solid $^4$He with the Shadow Path Integral Ground State method. This exact T=0 K projector method allows to describes quantum solids without introducing any a priori equilibrium position. We have fo und that the efficiency in computing off-diagonal properties in the solid phase sensibly improves when the direct sampling of permutations, in principle not required, is introduced. We have computed the exact one-body density matrix (obdm) in large commensurate 4He crystal finding a decreasing condensate fraction with increasing imaginary time of projection, making our result not conclusive on the presence of Bose-Einstein condensation in bulk solid 4He. We can only give an upper bound of 2.5 times 10^-8 on the condensate fraction. We have exploited the SPIGS method to study also 4He crystal containing grain boundaries by computing the related surface energy and the obdm along these defects. We have found that also highly symmetrical grain boundaries have a finite condensate fraction. We have also derived a route for the estimation of the true equilibrium concentration of vacancies x_v in bulk T=0 K solid 4He, which is shown to be finite, x_v=0.0014(1) at the melting density, when computed with the variational shadow wave function technique.
We present results of Diffusion Monte Carlo calculations for a system of solid ortho-D_2 at different densities, for pressure ranging from 0 up to 350MPa. We compare the equation of state obtained using two of the most used effective intermolecular p otentials, i.e. the Silvera--Goldman and the Buck potentials, with experimental data, in order to assess the validity of the model interactions. The Silvera-Goldman potential has been found to provide a satisfactory agreement with experimental results, showing that, as opposed to what recently found for p-H_2, three--body forces can be efficiently accounted for by an effective two--body term.
We probe the superconducting gap in the zero temperature ground state of an attractively interacting spin-imbalanced two-dimensional Fermi gas with Diffusion Monte Carlo. A condensate fraction at nonzero pair momentum evidences a spatially non-unifor m superconducting order parameter. Comparison with exact diagonalisation studies confirms that the nonzero condensate fraction across a range of nonzero fermion pair momenta is consistent with non-exclusive pairing between majority and minority fermions, an extension beyond FFLO theory.
104 - S. Azadi , W. M. C. Foulkes , 2013
We use the diffusion quantum Monte Carlo (DMC) method to calculate the ground state phase diagram of solid molecular hydrogen and examine the stability of the most important insulating phases relative to metallic crystalline molecular hydrogen. We de velop a new method to account for finite-size errors by combining the use of twist-averaged boundary conditions with corrections obtained using the Kwee-Zhang-Krakauer (KZK) functional in density functional theory. To study band-gap closure and find the metallization pressure, we perform accurate quasi-particle many-body calculations using the $GW$ method. In the static approximation, our DMC simulations indicate a transition from the insulating Cmca-12 structure to the metallic Cmca structure at around 375 GPa. The $GW$ band gap of Cmca-12 closes at roughly the same pressure. In the dynamic DMC phase diagram, which includes the effects of zero-point energy, the Cmca-12 structure remains stable up to 430 GPa, well above the pressure at which the $GW$ band gap closes. Our results predict that the semimetallic state observed experimentally at around 360 GPa [Phys. Rev. Lett. {bf 108}, 146402 (2012)] may correspond to the Cmca-12 structure near the pressure at which the band gap closes. The dynamic DMC phase diagram indicates that the hexagonal close packed $P6_3/m$ structure, which has the largest band gap of the insulating structures considered, is stable up to 220 GPa. This is consistent with recent X-ray data taken at pressures up to 183 GPa [Phys. Rev. B {bf 82}, 060101(R) (2010)], which also reported a hexagonal close packed arrangement of hydrogen molecules.
An ab-initio method for determining the dynamical structure function of an interacting many--body quantum system has been devised by combining a generalized integral transform method with Quantum Monte Carlo methods. As a first application, the coher ent and, separately, the incoherent excitation spectrum of bulk atomic 4He has been computed, both in the low and intermediate momentum range. The peculiar form of the kernel in the integral transform of the dynamical structure function allows to predict, without using any model, both position and width of the collective excitations in the maxon--roton region, as well as the second collective peak. A prediction of the dispersion of the single--particle modes described by the incoherent part is also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا