ﻻ يوجد ملخص باللغة العربية
A thin film technology compatible with multilayer device fabrication is critical for exploring the potential of the 39-K superconductor magnesium diboride for superconducting electronics. Using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) process, it is shown that the high Mg vapor pressure necessary to keep the MgB$_2$ phase thermodynamically stable can be achieved for the {it in situ} growth of MgB$_2$ thin films. The films grow epitaxially on (0001) sapphire and (0001) 4H-SiC substrates and show a bulk-like $T_c$ of 39 K, a $J_c$(4.2K) of $1.2 times 10^7$ A/cm$^2$ in zero field, and a $H_{c2}(0)$ of 29.2 T in parallel magnetic field. The surface is smooth with a root-mean-square roughness of 2.5 nm for MgB$_2$ films on SiC. This deposition method opens tremendous opportunities for superconducting electronics using MgB$_2$.
In situ growth of pyrochlore iridate thin films has been a long-standing challenge due to the low reactivity of Ir at low temperatures and the vaporization of volatile gas species such as IrO3(g) and IrO2(g) at high temperatures and high oxygen parti
We have studied the structural and superconducting properties of MgB$_2$ thin films made by pulsed laser deposition followed by in situ annealing. The cross-sectional transmission electron microscopy reveals a nanocrystalline mixture of textured MgO
Precursor MgB2 thin films were prepared on sapphire substrates by magnetron sputtering. Influence of ex-situ annealing process on superconducting MgB2 thin films roughness is discussed. Optimized annealing process of MgB precursor thin films in vacuu
We report on nanoscale strain gradients in ferroelectric HoMnO3 epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane X-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders o
High-quality epitaxial MgB2 thin films prepared by pulsed laser deposition with Tc = 39 K offer the opportunity to study the anisotropy and robustness of the superconducting state in magnetic fields. We measure the in-plane electrical resistivity of