ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting MgB2 thin films nano-bridges for cryo-electronic application

87   0   0.0 ( 0 )
 نشر من قبل Andrej Plecenik
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precursor MgB2 thin films were prepared on sapphire substrates by magnetron sputtering. Influence of ex-situ annealing process on superconducting MgB2 thin films roughness is discussed. Optimized annealing process of MgB precursor thin films in vacuum results in smooth superconducting MgB2 thin films with roughness below 10 nm, critical temperature Tcon = 31 K and transition width DTc less than 1 K. Nano-bridges based on the superconducting MgB2 thin films using optical and Focused Ion Beam lithography were prepared. Critical current density jc (4.2 K) measured on 50 nm wide strip was 7.3x106 A/cm2 and no significant loss of superconducting properties was detected. Resistance vs. temperature and critical current vs. temperature characteristics were measured on these structures using standard DC four probe measurements.

قيم البحث

اقرأ أيضاً

We report the effect of annealing on the superconductivity of MgB2 thin films as functions of the postannealing temperature in the range from 700 C to 950 C and of the postannealing time in the range from 30 min to 120 min. On annealing at 900 C for 30 min, we obtained the best-quality MgB2 films with a transition temperature of 39 K and a critical current density of ~ 10^7 A/cm^2. Using the scanning electron microscopy, we also investigated the film growth mechanism. The samples annealed at higher temperatures showed the larger grain sizes, well-aligned crystal structures with preferential orientations along the c-axis, and smooth surface morphologies. However, a longer annealing time prevented the alignment of grains and reduced the superconductivity, indicating a strong interfacial reaction between the substrate and the MgB2 film.
We have performed flux noise and AC-susceptibility measurements on two 400 nm thick MgB$_2$ films. Both measurement techniques give information about the vortex dynamics in the sample, and hence the superconducting transition, and can be linked to ea ch other through the fluctuation-dissipation-theorem. The transition widths for the two films are 0.3 and 0.8 K, respectively, and the transitions show a multi step-like behavior in the AC-susceptibility measurements. The same phenomenon is observed in the flux noise measurements through a change in the frequency dependence of the spectral density at each step in the transition. The results are discussed and interpreted in terms of vortices carrying an arbitrary fraction of a flux quantum as well as in terms of different macroscopic regions in the films having slightly different compositions, and hence, different critical temperatures.
87 - R K Singh , Y Shen , R Gandikota 2007
Our Rutherford backscattering spectrometry (RBS) study has found that concentrations up to 7 atomic percent of Rb and Cs can be introduced to a depth of ~700 A in MgB2 thin films by annealing in quartz ampoules containing elemental alkali metals at < 350 degree centigrade. No significant change in transition temperature (Tc) was observed, in contrast to an earlier report of very high Tc (>50 K) for similar experiments on MgB2 powders. The lack of a significant change in Tc and intra-granular carrier scattering suggests that Rb and Cs diffuse into the film, but do not enter the grains. Instead, the observed changes in the electrical properties, including a significant drop in Jc and an increase in delta rho (rho300-rho40), arise from a decrease in inter-granular connectivity due to segregation of the heavy alkaline metals and other impurities (i.e. C and O) introduced into the grain boundary regions during the anneals.
We discuss pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The E B process produces low defected crystallites with small grain size providing enhanced pinning at grain boundaries without degradation of Tc. The PLD process produces films with structural disorder on a scale less that the coherence length that further improves pinning, but also depresses Tc.
Critical fields of four MgB2 thin films with a normal state resistivity ranging from 5 to 50 mWcm and Tc from 29.5 to 38.8 K were measured up to 28 T. Hc2(T) curves present a linear behavior towards low temperatures. Very high critical field values h ave been found, up to 24 T along the c-axis and 57 T in the basal plane not depending on the normal state resistivity values. In this paper, critical fields will be analyzed taking into account the multiband nature of MgB2; we will show that resistivity and upper critical fields can be ascribed to different scattering mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا