ﻻ يوجد ملخص باللغة العربية
In situ growth of pyrochlore iridate thin films has been a long-standing challenge due to the low reactivity of Ir at low temperatures and the vaporization of volatile gas species such as IrO3(g) and IrO2(g) at high temperatures and high oxygen partial pressures. To address this challenge, we combine thermodynamic analysis of the Pr-Ir-O2 system with experimental results from the conventional physical vapor deposition (PVD) technique of co-sputtering. Our results indicate that only high growth temperatures yield films with crystallinity sufficient for utilizing and tailoring the desired topological electronic properties. Thermodynamic calculations indicate that high deposition temperatures and high partial pressures of gas species O2(g) and IrO3(g), are required to stabilize Pr2Ir2O7. We further find that the gas species partial pressure requirements are beyond that achievable by any conventional PVD technique. We experimentally show that conventional PVD growth parameters produce exclusively Pr3IrO7, which conclusion we reproduce with theoretical calculations. Our findings provide solid evidence that in situ synthesis of Pr2Ir2O7 thin films is fettered by the inability to grow with oxygen partial pressure on the order of 10 Torr, a limitation inherent to the PVD process. Thus, we suggest high-pressure techniques, in particular chemical vapor deposition (CVD), as a route to synthesis of Pr2Ir2O7, as this can support thin film deposition under the high pressure needed for in situ stabilization of Pr2Ir2O7.
A thin film technology compatible with multilayer device fabrication is critical for exploring the potential of the 39-K superconductor magnesium diboride for superconducting electronics. Using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) proc
A Landau-Ginsburg-Devonshire-type nonlinear phenomenological theory is presented, which enables the thermodynamic description of dense laminar polydomain states in epitaxial ferroelectric thin films. The theory explicitly takes into account the mecha
The critical impact of epitaxial stress on the stabilization of the ferroelectric orthorhombic phase of hafnia is proved. Epitaxial bilayers of Hf0.5Zr0.5O2 and La0.67Sr0.33MnO3 electrodes were grown on a set of single crystalline oxide 001-oriented,
We report on the synthesis of perovskite SrIrO3 thin films using sputtering technique. Single phase (110) oriented SrIrO$_3$ thin films were epitaxially grown on SrTiO3 (001) substrate. Using off-axis XRD $theta-2theta$ scans, we demonstrate that the
Chalcogenide perovskites have emerged as a new class of electronic materials, but fundamental properties and applications of chalcogenide perovskites remain limited by the lack of high quality epitaxial thin films. We report epitaxial thin film growt