ﻻ يوجد ملخص باللغة العربية
Diffusion is often accompanied by a reaction or sorption which can induce temperature inhomogeneities. Monte Carlo simulations of Lennard-Jones atoms in zeolite NaCaA are reported with a hot zone presumed to be created by a reaction. Our simulations show that localised hot regions can alter both the kinetic and transport properties. Further, enhancement of the diffusion constant is greater for larger barrier height, a surprising result of considerable significance to many chemical and biological processes. We find an unanticipated coupling between reaction and diffusion due to the presence of hot zone in addition to that which normally exists via concentration.
The reversible A <-> B reaction-diffusion process, when species A and B are initially mixed and diffuse with different diffusion coefficients, is investigated using the boundary layer function method. It is assumed that the ratio of the characteristi
We analyze several aspects of the phenomenon of stochastic resonance in reaction-diffusion systems, exploiting the nonequilibrium potentials framework. The generalization of this formalism (sketched in the appendix) to extended systems is first carri
Self-diffusion and radial distribution functions are studied in a strongly confined Lennard-Jones fluid. Surprisingly, in the solid-liquid phase transition region, where the system exhibits dynamic coexistence, the self-diffusion constants are shown
We study dynamics of pattern formation in systems belonging to class of reaction-Cattaneo models including persistent diffusion (memory effects of the diffusion flux). It was shown that due to the memory effects pattern seletion process are realized.
For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we