ﻻ يوجد ملخص باللغة العربية
We analyze several aspects of the phenomenon of stochastic resonance in reaction-diffusion systems, exploiting the nonequilibrium potentials framework. The generalization of this formalism (sketched in the appendix) to extended systems is first carried out in the context of a simplified scalar model, for which stationary patterns can be found analytically. We first show how system-size stochastic resonance arises naturally in this framework, and then how the phenomenon of array-enhanced stochastic resonance can be further enhanced by letting the diffusion coefficient depend on the field. A yet less trivial generalization is exemplified by a stylized version of the FitzHugh-Nagumo system, a paradigm of the activator-inhibitor class. After discussing for this system the second aspect enumerated above, we derive from it -through an adiabatic-like elimination of the inhibitor field- an effective scalar model that includes a nonlocal contribution. Studying the role played by the range of the nonlocal kernel and its effect on stochastic resonance, we find an optimal range that maximizes the systems response.
We study dynamics of pattern formation in systems belonging to class of reaction-Cattaneo models including persistent diffusion (memory effects of the diffusion flux). It was shown that due to the memory effects pattern seletion process are realized.
The occurrence of stochastic resonance in bistable systems undergoing anomalous diffusions, which arise from density-dependent fluctuations, is investigated with emphasis on the analytical formulation of the problem as well as a possible analytical d
We develop the stochastic approach to thermodynamics based on the stochastic dynamics, which can be discrete (master equation) continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itse
The theory of large deviations has been applied successfully in the last 30 years or so to study the properties of equilibrium systems and to put the foundations of equilibrium statistical mechanics on a clearer and more rigorous footing. A similar a
We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical re