ترغب بنشر مسار تعليمي؟ اضغط هنا

Aspects of stochastic resonance in reaction-diffusion systems: The nonequilibrium-potential approach

120   0   0.0 ( 0 )
 نشر من قبل Roberto R. Deza
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze several aspects of the phenomenon of stochastic resonance in reaction-diffusion systems, exploiting the nonequilibrium potentials framework. The generalization of this formalism (sketched in the appendix) to extended systems is first carried out in the context of a simplified scalar model, for which stationary patterns can be found analytically. We first show how system-size stochastic resonance arises naturally in this framework, and then how the phenomenon of array-enhanced stochastic resonance can be further enhanced by letting the diffusion coefficient depend on the field. A yet less trivial generalization is exemplified by a stylized version of the FitzHugh-Nagumo system, a paradigm of the activator-inhibitor class. After discussing for this system the second aspect enumerated above, we derive from it -through an adiabatic-like elimination of the inhibitor field- an effective scalar model that includes a nonlocal contribution. Studying the role played by the range of the nonlocal kernel and its effect on stochastic resonance, we find an optimal range that maximizes the systems response.



قيم البحث

اقرأ أيضاً

We study dynamics of pattern formation in systems belonging to class of reaction-Cattaneo models including persistent diffusion (memory effects of the diffusion flux). It was shown that due to the memory effects pattern seletion process are realized. We have found that oscillatory behavior of the radius of the adsorbate islands is governed by finite propagation speed. It is shown that stabilization of nano-patterns in such models is possible only by nonequilibrium chemical reactions. Oscillatory dynamics of pattern formation is studied in details by numerical simulations.
The occurrence of stochastic resonance in bistable systems undergoing anomalous diffusions, which arise from density-dependent fluctuations, is investigated with emphasis on the analytical formulation of the problem as well as a possible analytical d erivation of key quantifiers of stochastic resonance. The nonlinear Fokker-Planck equation describing the system dynamics, together with the corresponding Ito-Langevin equation, are formulated. In the linear-response regime analytical expressions of the spectral amplification, of the signal-to-noise ratio and of the hysteresis loop area are derived as quantifiers of stochastic resonance. These quantifiers are found to be strongly dependent on the parameters controlling the type of diffusion, in particular the peak characterizing the signal-to-noise ratio occurs only in close ranges of parameters. Results introduce the relevant information that taking into consideration the interactions of anomalous diffusive systems with a periodic signal, can provide a better understanding of the physics of stochastic resonance in bistable systems driven by periodic forces.
We develop the stochastic approach to thermodynamics based on the stochastic dynamics, which can be discrete (master equation) continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itse lf and the second, the definition of entropy production rate which is nonnegative and vanishes in thermodynamic equilibrium. Based on these assumptions we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium, and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasi-equilibrium processes, the convexity of the equilibrium surface, the monotonic time behavior of thermodynamic potentials, including entropy, the bilinear form of the entropy production rate, the Onsager coefficients and reciprocal relations, and the nonequilibrium steady states of chemical reactions.
The theory of large deviations has been applied successfully in the last 30 years or so to study the properties of equilibrium systems and to put the foundations of equilibrium statistical mechanics on a clearer and more rigorous footing. A similar a pproach has been followed more recently for nonequilibrium systems, especially in the context of interacting particle systems. We review here the basis of this approach, emphasizing the similarities and differences that exist between the application of large deviation theory for studying equilibrium systems on the one hand and nonequilibrium systems on the other. Of particular importance are the notions of macroscopic, hydrodynamic, and long-time limits, which are analogues of the equilibrium thermodynamic limit, and the notion of statistical ensembles which can be generalized to nonequilibrium systems. For the purpose of illustrating our discussion, we focus on applications to Markov processes, in particular to simple random walks.
We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical re action systems based on a master equation defined on the space of microscopic chemical states, and on appropriate definitions of entropy and entropy production, The system is in contact with a heat reservoir, and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlogl reaction models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا