ﻻ يوجد ملخص باللغة العربية
The reversible A <-> B reaction-diffusion process, when species A and B are initially mixed and diffuse with different diffusion coefficients, is investigated using the boundary layer function method. It is assumed that the ratio of the characteristic time of the reaction to the characteristic time of diffusion is taken as a small parameter of the task. It was shown that diffusion-reaction process can be considered as a quasi-equilibrium process. Despite this fact the contribution of the reaction in changes of the species concentration is comparable with the diffusion contributions. Moreover the ratios of the reaction and diffusion contributions are independent of time and coordinate. The dependence of the reaction rate on the initial species distribution is analyzed. It was firstly obtained that the number of the reaction zones is determined by the initial conditions and changes with time. The asymptotic long-time behaviour of the reaction rate also dependents on the initial distribution.
We propose the deterministic rate equation of three-species in the reaction - diffusion system. For this case, our purpose is to carry out the decay process in our three-species reaction-diffusion model of the form $A+B+Cto D$. The particle density a
Diffusion is often accompanied by a reaction or sorption which can induce temperature inhomogeneities. Monte Carlo simulations of Lennard-Jones atoms in zeolite NaCaA are reported with a hot zone presumed to be created by a reaction. Our simulations
We study the quantum quench in two coupled Tomonaga-Luttinger Liquids (TLLs), from the off-critical to the critical regime, relying on the conformal field theory approach and the known solutions for single TLLs. We consider a squeezed form of the ini
The change from the diffusion-limited to the reaction-limited cooperative behaviour in reaction-diffusion systems is analysed by comparing the universal long-time behaviour of the coagulation-diffusion process on a chain and on the Bethe lattice. On
We consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction. We deduce from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies e