ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical and magnetic properties of the new Kondo-lattice compound Ce3Pd4Ge4

100   0   0.0 ( 0 )
 نشر من قبل Myung-Hwa Jung
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the electric resistivity, magnetoresistance, magnetic susceptibility and magnetization of the new Kondo-lattice compound Ce3Pd4Ge4. The electrical resistivity exhibits a rapid drop at temperatures below 6 K, while the magnetic susceptibility does not show any corresponding anomaly at that temperature. This phenomenon is similar to that of Ce3Pd20Ge6 which shows quadrupolar interation. We suggest that there is the possibility of quadrupolar interaction in the orthorhombic 4f-electron system Ce3Pd4Ge4. In addition, it is realized that the spin-dependent scattering effect is responsible for the magnetotransport.

قيم البحث

اقرأ أيضاً

We have investigated the elastic properties of the cubic dense Kondo compound Ce0.75La0.25B6 by means of ultrasonic measurements. We have obtained magnetic fields vs temperatures (H-T) phase diagrams under magnetic fields along the crystallographic [ 001], [110] and [111] axes. An ordered phase IV showing the elastic softening of c44 locates in low temperature region between 1.6 and 1.1 K below 0.7 T in all field directions. The phase IV shows an isotropic nature with regard to the field directions, while the antiferro-magnetic phase III shows an anisotropic character. A remarkable softening of c44 and a spontaneous trigonal distortion εyz+εzx+εxy recently reported by Akatsu et al. [J. Phys. Soc. Jpn. 72 (2003) 205] in the phase IV favor a ferro-quadrupole (FQ) moment of Oyz+Ozx+Oxy induced by an octupole ordering.
74 - Le Wang , Yuanji Xu , Meng Yang 2018
We report a detailed and comparative study of the single crystal CeCoInGa$_3$ in both experiment and theory. Resistivity measurements reveal the typical behavior of Kondo lattice with the onset temperature of coherence, $T^*approx 50,$K. The magnetic specific heat can be well fitted using a spin-fluctuation model at low temperatures, yielding a large Sommerfeld coefficient, $gammaapprox172,$mJ/mol K$^2$ at 6 K, suggesting that this is a heavy-fermion compound with a pronounced coherence effect. The magnetic susceptibility exhibits a broad field-independent peak at $T_{chi}$ and shows an obvious anisotropy within the $bc$ plane, reflecting the anisotropy of the coherence effect at high temperatures. These are compared with strongly correlated calculations combining first-principles band structure calculations and dynamical mean-field theory. Our results confirm the onset of coherence at about 50 K and reveal a similar anisotropy in the hybridization gap, pointing to a close connection between the hybridization strength of the low-temperature Fermi-liquid state and the high-temperature coherence effect.
We have found that CeCd$_{3}$P$_{3}$ crystallizes into a hexagonal ScAl$_{3}$C$_{3}$-type structure. The optical, transport and magnetic properties of CeCd$_{3}$P$_{3}$ were investigated by measuring the diffuse reflectance, electrical resistivity an d magnetization. CeCd$_{3}$P$_{3}$ is a semiconductor with the fundamental band gap of approximately 0.75 eV. The 4$f$ electrons of Ce$^{3+}$ ions are well localized but do not show long range order down to 0.48 K, presumably due to the geometrical frustration of Ce atoms. The magnetic ordering temperature is possibly lower than that of isostructural CeZn$_{3}$P$_{3}$ (0.75 K). Because several $f$-electron compounds with the ScAl$_{3}$C$_{3}$-type structure are quantum spin systems, CeCd$_{3}$P$_{3}$ may be a candidate of quantum spin liquid. On the other hand, the relatively large band gap compared to approximately 0.4 eV in CeZn$_{3}$P$_{3}$, would not be intimate with the observation of photoinduced Kondo effect, providing a potentially new range of applications of devices based on the Kondo effect.
In this study we report the results of study of novel ternary $Np_2PtGa_3$ compound. The x-ray-powder diffraction analysis reveals that the compound crystallizes in the orthorhombic CeCu$_2$-type crystal structure (space group Imma) with lattice para meters $a$ = 0.4409(2) nm, $b$ = 0.7077(3) nm and $c$ = 0.7683(3) nm at room temperature. The measurements of dc magnetization, specific heat and electron transport properties in the temperature range 1.7 - 300 K and in magnetic fields up to 9 T imply that this intermetallic compound belongs to a class of ferromagnetic Kondo systems. The Curie temperature of $T_C sim$ 26 K is determined from the magnetization and specific heat data. An enhanced coefficient of the electronic specific heat of $gamma$ = 180 mJ/(mol at. Np K$^2$) and -lnT dependence of the electrical resistivity indicate the presence of Kondo effect, which can be described in terms of the S = 1 underscreened Kondo-lattice model. The estimated Kondo temperature $T_K sim$ 24 K, Hall mobility of $sim$ 16.8 cm$^2$/Vs and effective mass of $sim$ 83 $m_e$ are consistent with assumption that the heavy-fermion state develops in $Np_2PtGa_3$ at low temperatures. We compare the observed properties of $Np_2PtGa_3$ to that found in $Np_2PtGa_3$ and discuss their difference in regard to change in the exchange interaction between the conduction and localized 5f electrons. We have used the Fermi wave vector $k_F$ to evaluate the Rudermann-Kittel-Kasuya-Yosida (RKKY) exchange. Based on experimental data of the (U, Np)$_2$(Pd, Pt)Ga$_3$ compounds we suggest that the evolution of the magnetic ground states in these actinide compounds can be explained within the RKKY formalism.
The magnetic ground state of the antiferromagnet Kondo lattice compound Ce8Pd24Ga has been investigated using neutron powder diffraction, inelastic neutron scattering and zero-field muon spin relaxation measurements. The neutron diffraction analysis, below TN (3.6(0.2)K), reveals a commensurate type-C antiferromagnetic structure with the ordered state magnetic moment of ~0.36 mB/Ce-atom along the cubic <111> direction. The analysis of the inelastic neutron scattering (INS) data based on the crystal field (CF) model reveals a doublet ground state with a ground state moment of 1.29 mB/Ce-atom. The observed magnetic moment from neutron diffraction, which is small compared to the expected value from CF-analysis, is attributed to screening of the local Ce moment by the Kondo effect. This is supported by the observed Kondo-type resistivity and a small change in the entropy of Ce8Pd24Ga at TN. The zero-field muon spin relaxation rate exhibits a sharp increase below TN indicating ordering of Ce moments, in agreement with the neutron diffraction data. The present studies reveal that the physical properties of Ce8Pd24Ga are governed by the onsite Kondo compensation, the moment stabilizing intersite RKKY interaction and the crystal field effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا