ترغب بنشر مسار تعليمي؟ اضغط هنا

Elastic Properties and Magnetic Phase Diagrams of Dense Kondo Compound Ce0.75La0.25B6

195   0   0.0 ( 0 )
 نشر من قبل Osamu Suzuki
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the elastic properties of the cubic dense Kondo compound Ce0.75La0.25B6 by means of ultrasonic measurements. We have obtained magnetic fields vs temperatures (H-T) phase diagrams under magnetic fields along the crystallographic [001], [110] and [111] axes. An ordered phase IV showing the elastic softening of c44 locates in low temperature region between 1.6 and 1.1 K below 0.7 T in all field directions. The phase IV shows an isotropic nature with regard to the field directions, while the antiferro-magnetic phase III shows an anisotropic character. A remarkable softening of c44 and a spontaneous trigonal distortion εyz+εzx+εxy recently reported by Akatsu et al. [J. Phys. Soc. Jpn. 72 (2003) 205] in the phase IV favor a ferro-quadrupole (FQ) moment of Oyz+Ozx+Oxy induced by an octupole ordering.

قيم البحث

اقرأ أيضاً

At zero magnetic field, a series of five phase transitions occur in Co3V2O8. The Neel temperature, TN=11.4 K, is followed by four additional phase changes at T1=8.9 K, T2=7.0 K, T3=6.9 K, and T4=6.2 K. The different phases are distinguished by the co mmensurability of the b-component of its spin density wave vector. We investigate the stability of these various phases under magnetic fields through dielectric constant and magnetic susceptibility anomalies. The field-temperature phase diagram of Co3V2O8 is completely resolved. The complexity of the phase diagram results from the competition of different magnetic states with almost equal ground state energies due to competing exchange interactions and frustration.
99 - H. J. Im , Y. S. Kwon , 2002
We have measured the electric resistivity, magnetoresistance, magnetic susceptibility and magnetization of the new Kondo-lattice compound Ce3Pd4Ge4. The electrical resistivity exhibits a rapid drop at temperatures below 6 K, while the magnetic suscep tibility does not show any corresponding anomaly at that temperature. This phenomenon is similar to that of Ce3Pd20Ge6 which shows quadrupolar interation. We suggest that there is the possibility of quadrupolar interaction in the orthorhombic 4f-electron system Ce3Pd4Ge4. In addition, it is realized that the spin-dependent scattering effect is responsible for the magnetotransport.
We have performed magnetization measurements at high magnetic fields of up to 53 T on single crystals of a uranium heavy-fermion compound U$_2$Zn$_{17}$ grown by the Bridgman method. In the antiferromagnetic state below the N{e}el temperature $T_{rm N}$ = 9.7 K, a metamagnetic transition is found at $H_c$ $simeq$ 32 T for the field along the [11$bar{2}$0] direction ($a$-axis). The magnetic phase diagram for the field along the [11$bar{2}$0] direction is given. The magnetization curve shows a nonlinear increase at $H_m$ $simeq$ 35 T in the paramagnetic state above $T_{rm N}$ up to a characteristic temperature $T_{{chi}{rm max}}$ where the magnetic susceptibility or electrical resistivity shows a maximum value. This metamagnetic behavior of the magnetization at $H_m$ is discussed in comparison with the metamagnetic magnetism of the heavy-fermion superconductors UPt$_3$, URu$_2$Si$_2$, and UPd$_2$Al$_3$. We have also carried out high-pressure resistivity measurement on U$_2$Zn$_{17}$ using a diamond anvil cell up to 8.7 GPa. Noble gas argon was used as a pressure-transmitting medium to ensure a good hydrostatic environment. The N{e}el temperature $T_{rm N}$ is almost pressure-independent up to 4.7 GPa and starts to increase in the higher-pressure region. The pressure dependences of the coefficient of the $T^2$ term in the electrical resistivity $A$, the antiferromagnetic gap $Delta$, and the characteristic temperature $T_{{rho}{rm max}}$ are discussed. It is found that the effect of pressure on the electronic states in U$_2$Zn$_{17}$ is weak compared with those in the other heavy fermion compounds.
We have found that CeCd$_{3}$P$_{3}$ crystallizes into a hexagonal ScAl$_{3}$C$_{3}$-type structure. The optical, transport and magnetic properties of CeCd$_{3}$P$_{3}$ were investigated by measuring the diffuse reflectance, electrical resistivity an d magnetization. CeCd$_{3}$P$_{3}$ is a semiconductor with the fundamental band gap of approximately 0.75 eV. The 4$f$ electrons of Ce$^{3+}$ ions are well localized but do not show long range order down to 0.48 K, presumably due to the geometrical frustration of Ce atoms. The magnetic ordering temperature is possibly lower than that of isostructural CeZn$_{3}$P$_{3}$ (0.75 K). Because several $f$-electron compounds with the ScAl$_{3}$C$_{3}$-type structure are quantum spin systems, CeCd$_{3}$P$_{3}$ may be a candidate of quantum spin liquid. On the other hand, the relatively large band gap compared to approximately 0.4 eV in CeZn$_{3}$P$_{3}$, would not be intimate with the observation of photoinduced Kondo effect, providing a potentially new range of applications of devices based on the Kondo effect.
In this work we report the physical properties of the new intermetallic compound TbRhIn5 investigated by means of temperature dependent magnetic susceptibility, electrical resistivity, heat-capacity and resonant x-ray magnetic diffraction experiments . TbRhIn5 is an intermetallic compound that orders antiferromagnetically at TN = 45.5 K, the highest ordering temperature among the existing RRhIn5 (1-1-5, R = rare earth) materials. This result is in contrast to what is expected from a de Gennes scaling along the RRhIn5 series. The X-ray resonant diffraction data below TN reveal a commensurate antiferromagnetic (AFM) structure with a propagation vector (1/2 0 1/2) and the Tb moments oriented along the c-axis. Strong (over two order of magnitude) dipolar enhancements of the magnetic Bragg peaks were observed at both Tb absorption edges LII and LIII, indicating a fairly high polarization of the Tb 5d levels. Using a mean field model including an isotropic first-neighbors exchange interaction J(R-R) and the tetragonal crystalline electrical field (CEF), we were able to fit our experimental data and to explain the direction of the ordered Tb-moments and the enhanced TN of this compound. The evolution of the magnetic properties along the RRhIn5 series and its relation to CEF effects for a given rare-earth is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا