ﻻ يوجد ملخص باللغة العربية
In this study we report the results of study of novel ternary $Np_2PtGa_3$ compound. The x-ray-powder diffraction analysis reveals that the compound crystallizes in the orthorhombic CeCu$_2$-type crystal structure (space group Imma) with lattice parameters $a$ = 0.4409(2) nm, $b$ = 0.7077(3) nm and $c$ = 0.7683(3) nm at room temperature. The measurements of dc magnetization, specific heat and electron transport properties in the temperature range 1.7 - 300 K and in magnetic fields up to 9 T imply that this intermetallic compound belongs to a class of ferromagnetic Kondo systems. The Curie temperature of $T_C sim$ 26 K is determined from the magnetization and specific heat data. An enhanced coefficient of the electronic specific heat of $gamma$ = 180 mJ/(mol at. Np K$^2$) and -lnT dependence of the electrical resistivity indicate the presence of Kondo effect, which can be described in terms of the S = 1 underscreened Kondo-lattice model. The estimated Kondo temperature $T_K sim$ 24 K, Hall mobility of $sim$ 16.8 cm$^2$/Vs and effective mass of $sim$ 83 $m_e$ are consistent with assumption that the heavy-fermion state develops in $Np_2PtGa_3$ at low temperatures. We compare the observed properties of $Np_2PtGa_3$ to that found in $Np_2PtGa_3$ and discuss their difference in regard to change in the exchange interaction between the conduction and localized 5f electrons. We have used the Fermi wave vector $k_F$ to evaluate the Rudermann-Kittel-Kasuya-Yosida (RKKY) exchange. Based on experimental data of the (U, Np)$_2$(Pd, Pt)Ga$_3$ compounds we suggest that the evolution of the magnetic ground states in these actinide compounds can be explained within the RKKY formalism.
We report on the single crystal growth and anisotropic physical properties of CeAgAs$_2$. The compound crystallizes as on ordered variant of the HfCuSi$_2$-type crystal structure and adopts the orthorhombic space group $Pmca$~(#57) with two symmetry
We have measured the electric resistivity, magnetoresistance, magnetic susceptibility and magnetization of the new Kondo-lattice compound Ce3Pd4Ge4. The electrical resistivity exhibits a rapid drop at temperatures below 6 K, while the magnetic suscep
We present an new approach for the ferromagnetic, three-dimensional, translational-symmetric Kondo lattice model which allows us to derive both magnon energies and linewidths (lifetimes) and to study the properties of the ferromagnetic phase at finit
How many magnetic moments periodically arranged on a metallic surface are needed to generate a coherent Kondo lattice behavior? We investigate this fundamental issue within the particle-hole symmetric Kondo lattice model using quantum Monte Carlo sim
We have determined the physical ground state properties of the compounds CeRuPO and CeOsPO by means of magnetic susceptibility chi(T), specific heat C(T), electrical resistivity rho(T), and thermopower S(T) measurements. chi(T) reveals a trivalent 4f