ﻻ يوجد ملخص باللغة العربية
We derive a drift-diffusion equation for spin polarization in semiconductors by consistently taking into account electric-field effects and nondegenerate electron statistics. We identify a high-field diffusive regime which has no analogue in metals. In this regime there are two distinct spin diffusion lengths. Furthermore, spin injection from a ferromagnetic metal into a semiconductor is enhanced by several orders of magnitude and spins can be transported over distances much greater than the low-field spin diffusion length.
In semiconductor spintronic devices, the semiconductor is usually lightly doped and nondegenerate, and moderate electric fields can dominate the carrier motion. We recently derived a drift-diffusion equation for spin polarization in the semiconductor
Whereas spintronics brings the spin degree of freedom to electronic devices, molecular/organic electronics adds the opportunity to play with the chemical versatility. Here we show how, as a contender to commonly used inorganic materials, organic/mole
The behavior of spin diffusion in doped semiconductors is shown to be qualitatively different than in undoped (intrinsic) ones. Whereas a spin packet in an intrinsic semiconductor must be a multiple-band disturbance, involving inhomogeneous distribut
Spin injection efficiency based on conventional and/or half-metallic ferromagnet/semiconductor is greatly limited by the Schmidt obstacle due to conductivity mismatch, here we proposed that by replacing the metallic injectors with spin gapless semico
We immerse single layer graphene spin valves into purified water for a short duration (<1 min) and investigate the effect on spin transport. Following water immersion, we observe an enhancement in nonlocal magnetoresistance. Additionally, the enhance