ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin diffusion and injection in semiconductor structures: Electric field effects

77   0   0.0 ( 0 )
 نشر من قبل Zhi Gang Yu
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In semiconductor spintronic devices, the semiconductor is usually lightly doped and nondegenerate, and moderate electric fields can dominate the carrier motion. We recently derived a drift-diffusion equation for spin polarization in the semiconductors by consistently taking into account electric-field effects and nondegenerate electron statistics and identified a high-field diffusive regime which has no analogue in metals. Here spin injection from a ferromagnet (FM) into a nonmagnetic semiconductor (NS) is extensively studied by applying this spin drift-diffusion equation to several typical injection structures such as FM/NS, FM/NS/FM, and FM/NS/NS structures. We find that in the high-field regime spin injection from a ferromagnet into a semiconductor is enhanced by several orders of magnitude. For injection structures with interfacial barriers, the electric field further enhances spin injection considerably. In FM/NS/FM structures high electric fields destroy the symmetry between the two magnets at low fields, where both magnets are equally important for spin injection, and spin injection becomes locally determined by the magnet from which carriers flow into the semiconductor. The field-induced spin injection enhancement should also be insensitive to the presence of a highly doped nonmagnetic semiconductor (NS$^+$) at the FM interface, thus FM/NS$^+$/NS structures should also manifest efficient spin injection at high fields. Furthermore, high fields substantially reduce the magnetoresistance observable in a recent experiment on spin injection from magnetic semiconductors.


قيم البحث

اقرأ أيضاً

117 - Z. G. Yu , M. E. Flatte 2002
We derive a drift-diffusion equation for spin polarization in semiconductors by consistently taking into account electric-field effects and nondegenerate electron statistics. We identify a high-field diffusive regime which has no analogue in metals. In this regime there are two distinct spin diffusion lengths. Furthermore, spin injection from a ferromagnetic metal into a semiconductor is enhanced by several orders of magnitude and spins can be transported over distances much greater than the low-field spin diffusion length.
Experimental spin relaxation times in graphene, critical for spintronics and quantum information technologies, are two orders of magnitude below previous theoretical predictions for spin-phonon relaxation. Here, ab initio density-matrix dynamics simu lations reveal that electric fields and substrates strongly reduce spin-phonon relaxation time to the nanosecond scale, in agreement with experiments. Our predicted out-of-plane to in-plane lifetime ratio exceeds 1/2 on boron nitride substrates, matching experiment unlike previous models, suggesting that spin-phonon relaxation is dominant in graphene at room temperature.
Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the LLG equation, with magnetostriction effect taken into account, is developed to explain the measured dynamics. Based on this model, conditions for strong electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.
We present Maxwell equations with source terms for the electromagnetic field interacting with a moving electron in a spin-orbit coupled semiconductor heterostructure. We start with the eight--band ${bm k}{bm p}$ model and derive the electric and magn etic polarization vectors using the Gordon--like decomposition method. Next, we present the ${bm k}{bm p}$ effective Lagrangian for the nonparabolic conduction band electrons interacting with electromagnetic field in semiconductor heterostructures with abrupt interfaces. This Lagrangian gives rise to the Maxwell equations with source terms and boundary conditions at heterointerfaces as well as equations for the electron envelope wave function in the external electromagnetic field together with appropriate boundary conditions. As an example, we consider spin--orbit effects caused by the structure inversion asymmetry for the conduction electron states. We compute the intrinsic contribution to the electric polarization of the steady state electron gas in asymmetric quantum well in equilibrium and in the spin Hall regime. We argue that this contribution, as well as the intrinsic spin Hall current, are not cancelled by the elastic scattering processes.
Spin injection using ferromagnetic semiconductors at room temperature is a building block for the realization of spin-functional semiconductor devices. Nevertheless, this has been very challenging due to the lack of reliable room-temperature ferromag netism in well-known group IV and III-V based semiconductors. Here, we demonstrate room-temperature spin injection by using spin pumping in a (Ga,Fe)Sb / BiSb heterostructure, where (Ga,Fe)Sb is a ferromagnetic semiconductor (FMS) with high Curie temperature (TC) and BiSb is a topological insulator (TI). Despite the very small magnetization of (Ga,Fe)Sb at room temperature (45 emu/cc), we are able to detect spin injection from (Ga,Fe)Sb by utilizing the inverse spin Hall effect (ISHE) in the topological surface states of BiSb with a large inverse spin Hall angle of 2.5. Our study provides the first demonstration of spin injection as well as spin-to-charge conversion at room temperature in a FMS/TI heterostructure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا