ترغب بنشر مسار تعليمي؟ اضغط هنا

Delocalized Quasiparticles in the Vortex State of an Overdoped High-Tc Superconductor Probed by 63Cu NMR

123   0   0.0 ( 0 )
 نشر من قبل Guo-qing Zheng
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the spin Knight shift (K_s) and the nuclear spin-lattice relaxation rate (1/T_1) in the vortex state as a function of magnetic field (H) up to 28 T in the high-T_c superconductor TlSr_{2}CaCu_2O_{6.8} (T_c=68 K). At low temperatures well below T_{c}, both K_s and 1/T_1 measured around the middle point between two nearest vortices (saddle point) increase substantially with increasing field, which indicate that the quasiparticle states with an ungapped spectrum are extended outside the vortex cores in a d-wave superconductor. The density of states (DOS) around the saddle point is found to be kappa N_0sqrt{H/H_{c2}}, with kappa=0.5sim0.7 and N_0 being the normal-state DOS.



قيم البحث

اقرأ أيضاً

Quasiparticle transport in the vortex state of an s-wave superconductor at T -> 0 was investigated by measuring the thermal conductivity of LuNi_2B_2C down to 70 mK in a magnetic field perpendicular to the heat current. In zero field, there is no ele ctronic conduction, as expected for a superconducting gap without nodes. However, as soon as vortices enter the sample quasiparticles are seen to conduct remarkably well, even better than they would in a typical d-wave superconductor. This is in stark conflict with the widely held view that quasiparticle states in s-wave superconductors just above H_{c1} should be localized and bound to the vortex core.
In order to understand the origin of superconductivity, it is crucial to ascertain the nature and origin of the primary carriers available to participate in pairing. Recent quantum oscillation experiments on high Tc cuprate superconductors have revea led the existence of a Fermi surface akin to normal metals, comprising fermionic carriers that undergo orbital quantization. However, the unexpectedly small size of the observed carrier pocket leaves open a variety of possibilities as to the existence or form of any underlying magnetic order, and its relation to d-wave superconductivity. Here we present quantum oscillations in the magnetisation (the de Haas-van Alphen or dHvA effect) observed in superconducting YBa2Cu3O6.51 that reveal more than one carrier pocket. In particular, we find evidence for the existence of a much larger pocket of heavier mass carriers playing a thermodynamically dominant role in this hole-doped superconductor. Importantly, characteristics of the multiple pockets within this more complete Fermi surface impose constraints on the wavevector of any underlying order and the location of the carriers in momentum space. These constraints enable us to construct a possible density-wave scenario with spiral or related modulated magnetic order, consistent with experimental observations.
From measurements of the ^{63}Cu Knight shift (K) and the nuclear spin-lattice relaxation rate (1/T_{1}) under magnetic fields from zero up to 28 T in the slightly overdoped superconductor TlSr_{2}CaCu_{2}O_{6.8} (T_{c}=68 K), we find that the pseudo gap behavior, {em i.e.}, the reductions of 1/T_{1}T and K above T_{c} from the values expected from the normal state at high T, is strongly field dependent and follows a scaling relation. We show that this scaling is consistent with the effects of the Cooper pair density fluctuations. The present finding contrasts sharply with the pseudogap property reported previously in the underdoped regime where no field effect was seen up to 23.2 T. The implications are discussed.
By using Nuclear Magnetic Resonance and ac-susceptibility, the characteristic correlation times for the vortex dynamics, in an iron-based superconductor, have been derived. Upon cooling, the vortex dynamics displays a crossover consistent with a vort ex glass transition. The correlation times, in the fast motions regime, merge onto a universal curve which is fit by the Vogel-Fulcher law, rather than by an Arrhenius law. Moreover, the pinning barrier shows a weak dependence on the magnetic field which can be heuristically justified within a fragile glass scenario. In addition, the glass freezing temperatures obtained by the two techniques merge onto the de Almeida-Thouless line. Finally the phase diagram for the mixed phase has been derived.
In iron-based superconductors, high critical temperature (Tc) superconductivity over 50 K has only been accomplished in electron-doped hREFeAsO (hRE = heavy rare earth (RE) element). While hREFeAsO has the highest bulk Tc (58 K), progress in understa nding its physical properties has been relatively slow due to difficulties in achieving high concentration electron-doping and carrying out neutron-experiments. Here, we present a systematic neutron powder diffraction (NPD) study of 154SmFeAsO1-xDx, and the discovery of a new long-range antiferromagnetic ordering with x >= 0.56 (AFM2) accompanying a structural transition from tetragonal to orthorhombic. Surprisingly, the Fe magnetic moment in AFM2 reaches a magnitude of 2.73 muB/Fe, which is the largest in all non-doped iron pnictides and chalcogenides. Theoretical calculations suggest that the AFM2 phase originates in kinetic frustration of the Fe-3dxy orbital, in which the nearest neighbor hopping parameter becomes zero. The unique phase diagram, i. e., highest-Tc superconducting phase is adjacent to the strongly correlated phase in electron-overdoped regime, yields important clues to the unconventional origins of superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا