ﻻ يوجد ملخص باللغة العربية
We report the spin Knight shift (K_s) and the nuclear spin-lattice relaxation rate (1/T_1) in the vortex state as a function of magnetic field (H) up to 28 T in the high-T_c superconductor TlSr_{2}CaCu_2O_{6.8} (T_c=68 K). At low temperatures well below T_{c}, both K_s and 1/T_1 measured around the middle point between two nearest vortices (saddle point) increase substantially with increasing field, which indicate that the quasiparticle states with an ungapped spectrum are extended outside the vortex cores in a d-wave superconductor. The density of states (DOS) around the saddle point is found to be kappa N_0sqrt{H/H_{c2}}, with kappa=0.5sim0.7 and N_0 being the normal-state DOS.
Quasiparticle transport in the vortex state of an s-wave superconductor at T -> 0 was investigated by measuring the thermal conductivity of LuNi_2B_2C down to 70 mK in a magnetic field perpendicular to the heat current. In zero field, there is no ele
In order to understand the origin of superconductivity, it is crucial to ascertain the nature and origin of the primary carriers available to participate in pairing. Recent quantum oscillation experiments on high Tc cuprate superconductors have revea
From measurements of the ^{63}Cu Knight shift (K) and the nuclear spin-lattice relaxation rate (1/T_{1}) under magnetic fields from zero up to 28 T in the slightly overdoped superconductor TlSr_{2}CaCu_{2}O_{6.8} (T_{c}=68 K), we find that the pseudo
By using Nuclear Magnetic Resonance and ac-susceptibility, the characteristic correlation times for the vortex dynamics, in an iron-based superconductor, have been derived. Upon cooling, the vortex dynamics displays a crossover consistent with a vort
In iron-based superconductors, high critical temperature (Tc) superconductivity over 50 K has only been accomplished in electron-doped hREFeAsO (hRE = heavy rare earth (RE) element). While hREFeAsO has the highest bulk Tc (58 K), progress in understa