ﻻ يوجد ملخص باللغة العربية
From measurements of the ^{63}Cu Knight shift (K) and the nuclear spin-lattice relaxation rate (1/T_{1}) under magnetic fields from zero up to 28 T in the slightly overdoped superconductor TlSr_{2}CaCu_{2}O_{6.8} (T_{c}=68 K), we find that the pseudogap behavior, {em i.e.}, the reductions of 1/T_{1}T and K above T_{c} from the values expected from the normal state at high T, is strongly field dependent and follows a scaling relation. We show that this scaling is consistent with the effects of the Cooper pair density fluctuations. The present finding contrasts sharply with the pseudogap property reported previously in the underdoped regime where no field effect was seen up to 23.2 T. The implications are discussed.
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O6+x single crystals. The fluctuation conductivity is found to vanish
We use electronic Raman scattering to study the model single-layer cuprate superconductor HgBa2CuO4+d. In an overdoped sample, we observe a pronounced amplitude enhancement of a high-energy peak related to two-magnon excitations in insulating cuprate
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O(6+x). These experiments allow us to determine the field Hc(T) and th
We have used pulsed magnetic fields up to 60Tesla to suppress the contribution of superconducting fluctuations(SCF)to the conductivity above Tc in a series of YBa2Cu3O6+x from the deep pseudogapped state to slight overdoping. Accurate determinations
The experimental investigations done in our paper Phys.Rev.B84,014522(2011) allowed us to establish that the superconducting fluctuations (SCF) always die out sharply with increasing T. But contrary to the claim done in the comment of Ramallo et al.,