ﻻ يوجد ملخص باللغة العربية
Quasiparticle transport in the vortex state of an s-wave superconductor at T -> 0 was investigated by measuring the thermal conductivity of LuNi_2B_2C down to 70 mK in a magnetic field perpendicular to the heat current. In zero field, there is no electronic conduction, as expected for a superconducting gap without nodes. However, as soon as vortices enter the sample quasiparticles are seen to conduct remarkably well, even better than they would in a typical d-wave superconductor. This is in stark conflict with the widely held view that quasiparticle states in s-wave superconductors just above H_{c1} should be localized and bound to the vortex core.
We report the spin Knight shift (K_s) and the nuclear spin-lattice relaxation rate (1/T_1) in the vortex state as a function of magnetic field (H) up to 28 T in the high-T_c superconductor TlSr_{2}CaCu_2O_{6.8} (T_c=68 K). At low temperatures well be
The thermal conductivity of borocarbide superconductor LuNi_2B_2C was measured down to 70 mK (T_c/200) in a magnetic field perpendicular to the heat current from H = 0 to above H_c2 = 7 T. As soon as vortices enter the sample, the conduction at T ->
The site-selective nuclear spin-lattice relaxation rate T1^{-1} is theoretically studied inside a vortex core in a chiral p-wave superconductor within the framework of the quasiclassical theory of superconductivity. It is found that T1^{-1} at the vo
We report on the observation of bulk superconductivity from dc magnetization measurements in a cylindrical single crystal of CuxBi2Se3. The magnitude of the magnetization in the Meissner state is very small and the magnetic-field dependence of the ma
The mechanism of the interplay between superconductivity and magnetism is one of the intriguing and challenging problems in physics. Theory has predicted that the ferromagnetic order can coexist with the superconducting order in the form of a spontan