ﻻ يوجد ملخص باللغة العربية
The 2-fold degeneracy of the ground state of a quasi-one-dimensional system allows it to support topological excitations such as solitons. We study the combined effects of Coulomb interactions and confinement due to interchain coupling on the statistics of such defects. We concentrate on a 2D case which may correspond to monolayers of polyacetylene or other charge density waves. The theory is developped by a mapping to the 2D Ising model with long-range 4-spin interactions. The phase diagram exhibits deconfined phases for liquids and Wigner crystals of kinks and confined ones for bikinks. Also we find aggregated phases with either infinite domain walls of kinks or finite rods of bikinks. Roughening effects due to both temperature and Coulomb repulsion are observed. Applications may concern the melting of stripes in doped correlated materials.
While equilibrium phase transitions are well described by a free-energy landscape, there are few tools to describe general features of their non-equilibrium counterparts. On the other hand, near-equilibrium free-energies are easily accessible but the
Most common types of symmetry breaking in quasi-one-dimensional electronic systems possess a combined manifold of states degenerate with respect to both the phase $theta$ and the amplitude $A$ sign of the order parameter $Aexp(itheta)$. These degrees
We analyze the diffusive motion of kink solitons governed by the thermal sine-Gordon equation. We analytically calculate the correlation function of the position of the kink center as well as the diffusion coefficient, both up to second-order in temp
While the canonical ensemble has been tremendously successful in capturing thermal statistics of macroscopic systems, deviations from canonical behavior exhibited by small systems are not well understood. Here, using a small two dimensional Ising mag
Multivariate fluctuation relations are established in three stochastic models of transistors, which are electronic devices with three ports and thus two coupled currents. In the first model, the transistor has no internal state variable and particle