ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transitions and pattern formation in ensembles of phase-amplitude solitons in quasi-one-dimensional electronic systems

110   0   0.0 ( 0 )
 نشر من قبل Petr Karpov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Most common types of symmetry breaking in quasi-one-dimensional electronic systems possess a combined manifold of states degenerate with respect to both the phase $theta$ and the amplitude $A$ sign of the order parameter $Aexp(itheta)$. These degrees of freedom can be controlled or accessed independently via either the spin polarization or the charge densities. To understand statistical properties and the phase diagram in the course of cooling under the controlled parameters, we present here an analytical treatment supported by Monte Carlo simulations for a generic coarse-grained two-fields model of XY-Ising type. The degeneracies give rise to two coexisting types of topologically nontrivial configurations: phase vortices and amplitude kinks -- the solitons. In 2D, 3D states with long-range (or BKT type) orders, the topological confinement sets in at a temperature $T=T_1$ which binds together the kinks and unusual half-integer vortices. At a lower $T=T_2$, the solitons start to aggregate into walls formed as rods of amplitude kinks which are ultimately terminated by half-integer vortices. With lowering $T$, the walls multiply passing sequentially across the sample. The presented results indicate a possible physical realization of a peculiar system of half-integer vortices with rods of amplitude kinks connecting their cores. Its experimental realization becomes feasible in view of recent successes in real space observations and even manipulations of domain walls in correlated electronic systems.



قيم البحث

اقرأ أيضاً

We investigate the nature of trions, pairing and quantum phase transitions in one-dimensional strongly attractive three-component ultracold fermions in external fields. Exact results for the groundstate energy, critical fields, magnetization and phas e diagrams are obtained analytically from the Bethe ansatz solutions. Driven by Zeeman splitting, the system shows exotic phases of trions, bound pairs, a normal Fermi liquid and four mixtures of these states. Particularly, a smooth phase transition from a trionic phase into a pairing phase occurs as the highest hyperfine level separates from the two lower energy levels. In contrast, there is a smooth phase transition from the trionic phase into a normal Fermi liquid as the lowest level separates from the two higher levels.
We consider quantum Heisenberg ferro- and antiferromagnets on the square lattice with exchange anisotropy of easy-plane or easy-axis type. The thermodynamics and the critical behaviour of the models are studied by the pure-quantum self-consistent har monic approximation, in order to evaluate the spin and anisotropy dependence of the critical temperatures. Results for thermodynamic quantities are reported and comparison with experimental and numerical simulation data is made. The obtained results allow us to draw a general picture of the subject and, in particular, to estimate the value of the critical temperature for any model belonging to the considered class.
143 - Yi Liao , Xiao-Bo Gong , Chu Guo 2019
In this paper, we determine the geometric phase for the one-dimensional $XXZ$ Heisenberg chain with spin-$1/2$, the exchange couple $J$ and the spin anisotropy parameter $Delta$ in a longitudinal field(LF) with the reduced field strength $h$. Using t he Jordan-Wigner transformation and the mean-field theory based on the Wicks theorem, a semi-analytical theory has been developed in terms of order parameters which satisfy the self-consistent equations. The values of the order parameters are numerically computed using the matrix-product-state(MPS) method. The validity of the mean-filed theory could be checked through the comparison between the self-consistent solutions and the numerical results. Finally, we draw the the topological phase diagrams in the case $J<0$ and the case $J>0$.
119 - K. Shimatake , Y. Toda , S. Tanda 2005
The comparison of the single-particle (SP) dynamics between the whisker and ring NbSe$_3$ crystals provides new insight into the phase transition properties in quasi-one-dimensional charge density wave (CDW) systems.
We study the one-dimensional sine-Gordon model as a prototype of roughening phenomena. In spite of the fact that it has been recently proven that this model can not have any phase transition [J. A. Cuesta and A. Sanchez, J. Phys. A 35, 2373 (2002)], Langevin as well as Monte Carlo simulations strongly suggest the existence of a finite temperature separating a flat from a rough phase. We explain this result by means of the transfer operator formalism and show as a consequence that sine-Gordon lattices of any practically achievable size will exhibit this apparent phase transition at unexpectedly large temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا