ﻻ يوجد ملخص باللغة العربية
Multivariate fluctuation relations are established in three stochastic models of transistors, which are electronic devices with three ports and thus two coupled currents. In the first model, the transistor has no internal state variable and particle exchanges between the ports is described as a Markov jump process with constant rates. In the second model, the rates linearly depend on an internal random variable, representing the occupancy of the transistor by charge carriers. The third model has rates nonlinearly depending on the internal occupancy. For the first and second models, finite-time multivariate fluctuation relations are also established giving insight into the convergence towards the asymptotic form of multivariate fluctuation relations in the long-time limit. For all the three models, the transport properties are shown to satisfy Onsagers reciprocal relations in the linear regime close to equilibrium as well as their generalizations holding in the nonlinear regimes farther away from equilibrium, as a consequence of microreversibility.
This paper has been withdrawn by the author due to an error in the derivation.
We study charge transport and fluctuations of the (3+1)-dimensional massive free Dirac theory. In particular, we focus on the steady state that emerges following a local quench whereby two independently thermalized halves of the system are connected
The consequences of microreversibility for the linear and nonlinear transport properties of systems subjected to external magnetic fields are systematically investigated in Aharonov-Bohm rings connected to two, three, and four terminals. Within the i
We report the first measurement of high order cumulants of the current fluctuations in an avalanche diode run through by a stationary dc current. Such a system is archetypic of devices in which transport is governed by a collective mechanism, here ch
We calculate the distribution of current fluctuations in two simple exclusion models. Although these models are classical, we recover even for small systems such as a simple or a double barrier, the same distibution of current as given by traditionna