ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperuniformity with no fine tuning in sheared sedimenting suspensions

79   0   0.0 ( 0 )
 نشر من قبل Joseph Paulsen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Particle suspensions, present in many natural and industrial settings, typically contain aggregates or other microstructures that can complicate macroscopic flow behaviors and damage processing equipment. Recent work found that applying uniform periodic shear near a critical transition can reduce fluctuations in the particle concentration across all length scales, leading to a hyperuniform state. However, this strategy for homogenization requires fine tuning of the strain amplitude. Here we show that in a model of sedimenting particles under periodic shear, there is a well-defined regime at low sedimentation speed where hyperuniform scaling automatically occurs. Our simulations and theoretical arguments show that the homogenization extends up to a finite lengthscale that diverges as the sedimentation speed approaches zero.



قيم البحث

اقرأ أيضاً

We investigate velocity probability distribution functions (PDF) of sheared hard-sphere suspensions. As observed in our Stokes flow simulations and explained by our single-particle theory, these PDFs can show pronounced deviations from a Maxwell-Bolt zmann distribution. The PDFs are symmetric around zero velocity and show a Gaussian core and exponential tails over more than six orders of magnitude of probability. Following the excellent agreement of our theory and simulation data, we demonstrate that the distribution functions scale with the shear rate, the particle volume concentration, as well as the fluid viscosity.
We study the overdamped sedimentation of non-Brownian objects of irregular shape using fluctuating hydrodynamics. The anisotropic response of the objects to flow, caused by their tendency to align with gravity, directly suppresses concentration and v elocity fluctuations. This allows the suspension to avoid the anomalous fluctuations predicted for suspensions of symmetric spheroids. The suppression of concentration fluctuations leads to a correlated, hyperuniform structure. For certain object shapes, the anisotropic response may act in the opposite direction, destabilizing uniform sedimentation.
118 - G. Drazer , J. Koplik , B. Khusid 2003
The velocity fluctuations present in macroscopically homogeneous suspensions of neutrally buoyant, non-Brownian spheres undergoing simple shear flow, and their dependence on the microstructure developed by the suspensions, are investigated in the lim it of vanishingly small Reynolds numbers using Stokesian dynamics simulations. We show that, in the dilute limit, the standard deviation of the velocity fluctuations is proportional to the volume fraction, in both the transverse and the flow directions, and that a theoretical prediction, which considers only for the hydrodynamic interactions between isolated pairs of spheres, is in good agreement with the numerical results at low concentrations. We also simulate the velocity fluctuations that would result from a random hard-sphere distribution of spheres in simple shear flow, and thereby investigate the effects of the microstructure on the velocity fluctuations. Analogous results are discussed for the fluctuations in the angular velocity of the suspended spheres. In addition, we present the probability density functions for all the linear and angular velocity components, and for three different concentrations, showing a transition from a Gaussian to an Exponential and finally to a Stretched Exponential functional form as the volume fraction is decreased. We also show that, although the pair distribution function recovers its fore-aft symmetry in dilute suspensions, it remains anisotropic and that this anisotropy can be accurately described by assuming the complete absence of any permanent doublets of spheres. We finally present a simple correction to the analysis of laser-Doppler velocimetry measurements.
The presence and the microscopic origin of normal stress differences in dense suspensions under simple shear flows are investigated by means of inertialess particle dynamics simulations, taking into account hydrodynamic lubrication and frictional con tact forces. The synergic action of hydrodynamic and contact forces between the suspended particles is found to be the origin of negative contributions to the first normal stress difference $N_1$, whereas positive values of $N_1$ observed at higher volume fractions near jamming are due to effects that cannot be accounted for in the hard-sphere limit. Furthermore, we found that the stress anisotropy induced by the planarity of the simple shear flow vanishes as the volume fraction approaches the jamming point for frictionless particles, while it remains finite for the case of frictional particles.
The phenomenon of shear-induced jamming is a factor in the complex rheological behavior of dense suspensions. Such shear-jammed states are fragile, i.e., they are not stable against applied stresses that are incompatible with the stress imposed to cr eate them. This peculiar flow-history dependence of the stress response is due to flow-induced microstructures. To examine jammed states realized under constant shear stress, we perform dynamic simulations of non-Brownian particles with frictional contact forces and hydrodynamic lubrication forces. We find clear signatures that distinguish these fragile states from the more conventional isotropic jammed states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا