ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-equilibrium statistical mechanics of the heat bath for two Brownian particles

308   0   0.0 ( 0 )
 نشر من قبل Ken Sekimoto
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new look at the heat bath for two Brownian particles, in which the heat bath as a `system is both perturbed and sensed by the Brownian particles. Non-local thermal fluctuation give rise to bath-mediated static forces between the particles. Based on the general sum-rule of the linear response theory, we derive an explicit relation linking these forces to the friction kernel describing the particles dynamics. The relation is analytically confirmed in the case of two solvable models and could be experimentally challenged. Our results point out that the inclusion of the environment as a part of the whole system is important for micron- or nano-scale physics.



قيم البحث

اقرأ أيضاً

369 - F. Becattini 2019
In this work the non-equilibrium density operator approach introduced by Zubarev more than 50 years ago to describe quantum systems at local thermodynamic equilibrium is revisited. This method - which was used to obtain the first Kubo formula of shea r viscosity, is especially suitable to describe quantum effects in fluids. This feature makes it a viable tool to describe the physics of the Quark Gluon Plasma in relativistic nuclear collisions.
We demonstrate that the clustering statistics and the corresponding phase transition to non-equilibrium clustering found in many experiments and simulation studies with self-propelled particles (SPPs) with alignment can be obtained from a simple kine tic model. The key elements of this approach are the scaling of the cluster cross-section with the cluster mass -- characterized by an exponent $alpha$ -- and the scaling of the cluster perimeter with the cluster mass -- described by an exponent $beta$. The analysis of the kinetic approach reveals that the SPPs exhibit two phases: i) an individual phase, where the cluster size distribution (CSD) is dominated by an exponential tail that defines a characteristic cluster size, and ii) a collective phase characterized by the presence of non-monotonic CSD with a local maximum at large cluster sizes. At the transition between these two phases the CSD is well described by a power-law with a critical exponent $gamma$, which is a function of $alpha$ and $beta$ only. The critical exponent is found to be in the range $0.8 < gamma < 1.5$ in line with observations in experiments and simulations.
61 - I. Farkas , I. Derenyi , G. Palla 2004
In this article we give an in depth overview of the recent advances in the field of equilibrium networks. After outlining this topic, we provide a novel way of defining equilibrium graph (network) ensembles. We illustrate this concept on the classica l random graph model and then survey a large variety of recently studied network models. Next, we analyze the structural properties of the graphs in these ensembles in terms of both local and global characteristics, such as degrees, degree-degree correlations, component sizes, and spectral properties. We conclude with topological phase transitions and show examples for both continuous and discontinuous transitions.
Recently Mazenko and Das and Mazenko introduced a non-equilibrium field theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy (BBGKY hierarchy) with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.
101 - Vassili Ivanov , Yan Zeng , 2004
We propose a statistical mechanics model for DNA melting in which base stacking and pairing are explicitly introduced as distinct degrees of freedom. Unlike previous approaches, this model describes thermal denaturation of DNA secondary structure in the whole experimentally accessible temperature range. Base pairing is described through a zipper model, base stacking through an Ising model. We present experimental data on the unstacking transition, obtained exploiting the observation that at moderately low pH this transition is moved down to experimentally accessible temperatures. These measurements confirm that the Ising model approach is indeed a good description of base stacking. On the other hand, comparison with the experiments points to the limitations of the simple zipper model description of base pairing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا