ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature dependence of the Kondo resonance and its satellites in CeCu_2Si_2

118   0   0.0 ( 0 )
 نشر من قبل Johann Kroha
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Reinert




اسأل ChatGPT حول البحث

We present high-resolution photoemission spectroscopy studies on the Kondo resonance of the strongly-correlated Ce system CeCu$_2$Si$_2$. Exploiting the thermal broadening of the Fermi edge we analyze position, spectral weight, and temperature dependence of the low-energy 4f spectral features, whose major weight lies above the Fermi level $E_F$. We also present theoretical predictions based on the single-impurity Anderson model using an extended non-crossing approximation (NCA), including all spin-orbit and crystal field splittings of the 4f states. The excellent agreement between theory and experiment provides strong evidence that the spectral properties of CeCu$_2$Si$_2$ can be described by single-impurity Kondo physics down to $T approx 5$ K.

قيم البحث

اقرأ أيضاً

94 - A. A. Aligia 2018
Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.
81 - D. Ehm , S. Hufner , F. Reinert 2007
We present a high-resolution photoemission study on the strongly correlated Ce-compounds CeCu_6, CeCu_2Si_2, CeRu_2Si_2, CeNi_2Ge_2, and CeSi_2. Using a normalization procedure based on a division by the Fermi-Dirac distribution we get access to the spectral density of states up to an energy of 5 k_BT above the Fermi energy E_F. Thus we can resolve the Kondo resonance and the crystal field (CF) fine-structure for different temperatures above and around the Kondo temperature T_K. The CF peaks are identified with multiple Kondo resonances within the multiorbital Anderson impurity model. Our theoretical 4f spectra, calculated from an extended non-crossing approximation (NCA), describe consistently the observed photoemission features and their temperature dependence. By fitting the NCA spectra to the experimental data and extrapolating the former to low temperatures, T_K can be extracted quantitatively. The resulting values for T_K and the crystal field energies are in excellent agreement with the results from bulk sensitive measurements, e.g. inelastic neutron scattering.
We investigate the periodic Anderson model with $bm{k}$-dependent $c$-$f$ mixing reproducing the point nodes of the hybridization gap by using the dynamical mean-field theory combined with the exact diagonalization method. At low temperature below a coherence temperature $T_0$, the imaginary part of the self-energy is found to be proportional to $T^2$ and the pseudogap with two characteristic energies $tilde{it Delta}_1$ and $tilde{it Delta}_2$ is clearly observed for $Tll T_0$, while the pseudogap is smeared with increasing $T$ and then disappears at high temperature $T simg T_0$ due to the evolution of the imaginary self-energy. When the Coulomb interaction between $f$ electrons $U$ increases, $tilde{it Delta}_1$, $tilde{it Delta}_2$, and $T_0$ together with $T_{rm max}$ at which the magnetic susceptibility is maximum decrease in proportion to the renormalization factor $Z$ resulting in a heavy-fermion semiconductor with a large mass enhancement $m^*/m=Z^{-1}$ for large $U$. We also examine the effect of the external magnetic field $H$ and find that the magnetization $M$ shows two metamagnetic anomalies $H_1$ and $H_2$ corresponding to $tilde{it Delta}_1$ and $tilde{it Delta}_2$ which are reduced due to the effect of $H$ together with $Z$. Remarkably, $Z^{-1}$ is found to be largely enhanced due to $H$ especially for $H_1 siml H siml H_2$, where the field induced heavy-fermion state is realized. The obtained results seem to be consistent with the experimental results observed in the anisotropic Kondo semiconductors such as CeNiSn.
The nature of the second order phase transition that occurs in URu2Si2 at 17.5 K remains puzzling despite intensive research over the past two and half decades. A key question emerging in the field is whether a hybridization gap between the renormali zed bands can be identified as the long-sought hidden order parameter. We report on the measurement of a hybridization gap in URu2Si2 employing a spectroscopic technique based on quasiparticle scattering across a ballistic metallic junction. The differential conductance exhibits an asymmetric double-peak structure, a clear signature for a Fano resonance in a Kondo lattice. The extracted hybridization gap opens well above the transition temperature, indicating that it is not the hidden order parameter. Our results put stringent constraints on the origin of the hidden order transition in URu2Si2 and demonstrate that quasiparticle scattering spectroscopy can probe the band renormalizations in a Kondo lattice via detection of a novel type of Fano resonance.
The order parameter and pairing mechanism for superconductivity in heavy fermion compounds are still poorly understood. Scanning tunneling microscopy and spectroscopy at ultra-low temperatures can yield important information about the superconducting order parameter and the gap structure. Here, we study the first heavy fermion superconductor, CeCu_2Si_2. Our data show the superconducting gap which is not fully formed and exhibits features that point to a multi-gap order parameter. Spatial mapping of the zero bias conductance in magnetic field reveals the vortex lattice, which allows us to unequivocally link the observed conductance gap to superconductivity in CeCu_2Si_2. The vortex lattice is found to be predominantly triangular with distortions at fields close to sim 0.7 H_{c2}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا