ﻻ يوجد ملخص باللغة العربية
The nature of the second order phase transition that occurs in URu2Si2 at 17.5 K remains puzzling despite intensive research over the past two and half decades. A key question emerging in the field is whether a hybridization gap between the renormalized bands can be identified as the long-sought hidden order parameter. We report on the measurement of a hybridization gap in URu2Si2 employing a spectroscopic technique based on quasiparticle scattering across a ballistic metallic junction. The differential conductance exhibits an asymmetric double-peak structure, a clear signature for a Fano resonance in a Kondo lattice. The extracted hybridization gap opens well above the transition temperature, indicating that it is not the hidden order parameter. Our results put stringent constraints on the origin of the hidden order transition in URu2Si2 and demonstrate that quasiparticle scattering spectroscopy can probe the band renormalizations in a Kondo lattice via detection of a novel type of Fano resonance.
We present results of Scanning Tunneling Microscopy and Spectroscopy (STS) measurements on the Kondo insulator SmB$_6$. The vast majority of surface areas investigated was reconstructed but, infrequently, also patches of varying size of non-reconstru
A polarized electronic Raman scattering study reveals the emergence of symmetry dependence in the electronic Raman response of single crystalline URu$_{2}$Si$_{2}$ below the Kondo crossover scale $T_Ksim100K$. In particular, the development of a cohe
We have measured the elastic constant (C11-C12)/2 in URu2Si2 by means of high-frequency ultrasonic measurements in pulsed magnetic fields H || [001] up to 61.8 T in a wide temperature range from 1.5 to 116 K. We found a reduction of (C11-C12)/2 that
We performed far-infrared optical spectroscopy measurements on the heavy fermion compound URu 2 Si 2 as a function of temperature. The lights electric-field was applied along the a-axis or the c-axis of the tetragonal structure. We show that in addit
Heavy electronic states originating from the f atomic orbitals underlie a rich variety of quantum phases of matter. We use atomic scale imaging and spectroscopy with the scanning tunneling microscope (STM) to examine the novel electronic states that