ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards exact solutions for the superconducting $T_c$ induced by electron-phonon interaction

73   0   0.0 ( 0 )
 نشر من قبل Guo-Zhu Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron-phonon interaction plays an important role in metals and can lead to superconductivity and other instabilities. Previous theoretical studies on superconductivity are largely based on the Migdal-Eliashberg theory, which neglects all the vertex corrections to electron-phonon coupling and breaks down in many unconventional superconductors. Here, we go beyond the Migdal-Eliashberg approximation and develop a nonperturbative Dyson-Schwinger equation approach to deal with the superconducting transition. Remarkably, we take into account all the vertex corrections by solving two coupled Ward-Takahashi identities derived from two global U(1) symmetries and rigorously prove that the fully renormalized electron propagator satisfies a self-closed integral equation that is directly amenable to numerical computations. Our approach works equally well in the weak and strong coupling regimes and provides an efficient method to determine superconducting $T_c$ and other quantities. As an application, our approach is used to investigate the high-$T_c$ superconductivity in one-unit-cell FeSe/SrTiO$_3$.



قيم البحث

اقرأ أيضاً

The superconductor at the LaAlO3-SrTiO3 interface provides a model system for the study of two-dimensional superconductivity in the dilute carrier density limit. Here we experimentally address the pairing mechanism in this superconductor. We extract the electron-phonon spectral function from tunneling spectra and conclude, without ruling out contributions of further pairing channels, that electron-phonon mediated pairing is strong enough to account for the superconducting critical temperatures. Furthermore, we discuss the electron-phonon coupling in relation to the superconducting phase diagram. The electron-phonon spectral function is independent of the carrier density, except for a small part of the phase diagram in the underdoped region. The tunneling measurements reveal that the increase of the chemical potential with increasing carrier density levels off and is zero in the overdoped region of the phase diagram. This indicates that the additionally induced carriers do not populate the band that hosts the superconducting state and that the superconducting order parameter therefore is weakened by the presence of charge carriers in another band.
It is widely accepted that phonon-mediated high-temperature superconductivity is impossible at ambient pressure, because of the very large effective masses of polarons/bipolarons at strong electron-phonon coupling. Here we challenge this belief by sh owing that strongly bound yet very light bipolarons appear for strong Peierls/Su-Schrieffer-Heeger interaction. These bipolarons also exhibit many other unconventional properties, e.g. at strong coupling there are two low-energy bipolaron bands that are stable against strong on-site Hubbard repulsion. Using numerical simulations and analytical arguments, we show that these properties result from the specific form of the phonon-mediated interaction, which is of pair-hopping instead of regular density-density type. This unusual effective interaction is bound to have non-trivial consequences for the superconducting state expected to arise at finite carrier concentrations, and should favor a large critical temperature.
Electron-phonon coupling (EPC) is one of the most common and fundamental interactions in solids. It not only dominates many basic dynamic processes like resistivity, thermal conductivity etc, but also provides the pairing glue in conventional superco nductors. But in high-temperature superconductors (HTSC), it is still controversial whether or not EPC is in favor of paring. Despite the controversies, many experiments have provided clear evidence for EPC in HTSC. In this paper, we briefly review EPC in cuprate and iron-based superconducting systems revealed by Raman scattering. We introduce how to extract the coupling information through phonon lineshape. Then we discuss the strength of EPC in different HTSC systems and possible factors affecting the strength. The comparative study between Raman phonon theories and experiments allows us to gain insight into some crucial electronic properties, especially superconductivity. Finally we summarize and compare EPC in the two existing HTSC systems, and discuss what role it may play in HTSC.
To understand the superconductivity recently discovered in Nd$_{0.8}$Sr$_{0.2}$NiO$_2$, we carried out LDA+DMFT (local density approximation plus dynamical mean-field theory) and magnetic force response calculations. The on-site correlation in Ni-$3d $ orbitals causes notable changes in the electronic structure. The calculated temperature-dependent susceptibility exhibits the Curie-Weiss behavior, indicating the localized character of its moment. From the low-frequency behavior of self-energy, we conclude that the undoped phase of this nickelate is Fermi-liquid-like contrary to cuprates. Interestingly, the estimated correlation strength by means of the inverse of quasiparticle weight is found to increase and then decrease as a function of hole concentration, forming a dome-like shape. Another finding is that magnetic interactions in this material become two-dimensional by hole doping. While the undoped NdNiO$_2$ has the sizable out-of-plane interaction, hole dopings strongly suppress it. This two-dimensionality is maximized at the hole concentration $deltaapprox0.25$. Further analysis as well as the implications of our findings are presented.
Motivated by the recent discovery of superconductivity in Ca- and Yb-intercalated graphite (CaC$_{6}$ and YbC$_{6}$) and from the ongoing debate on the nature and role of the interlayer state in this class of compounds, in this work we critically stu dy the electron-phonon properties of a simple model based on primitive graphite. We show that this model captures an essential feature of the electron-phonon properties of the Graphite Intercalation Compounds (GICs), namely, the existence of a strong dormant electron-phonon interaction between interlayer and $pi ^{ast}$ electrons, for which we provide a simple geometrical explanation in terms of NMTO Wannier-like functions. Our findings correct the oversimplified view that nearly-free-electron states cannot interact with the surrounding lattice, and explain the empirical correlation between the filling of the interlayer band and the occurrence of superconductivity in Graphite-Intercalation Compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا