ﻻ يوجد ملخص باللغة العربية
The electromagnetic response to microwaves in the mixed state of YBa2Cu3Oy(YBCO) was measured in order to investigate the electronic state inside and outside the vortex core. The magnetic-field dependence of the complex surface impedance at low temperatures was in good agreement with a general vortex dynamics description assuming that the field-independent viscous damping force and the linear restoring force were acting on the vortices. In other words, both real and imaginary parts of the complex resistivity, rho_1, and rho_2, were linear in B. This is explained by theories for d-wave superconductors. Using analysis based on the Coffey-Clem description of the complex penetration depth, we estimated that the vortex viscosity eta at 10 K was (4 sim 5) times 10^{-7} Ns/m^2. This value corresponds to omega_0 tau sim 0.3 - 0.5, where omega_0 and tau are the minimal gap frequency and the quasiparticle lifetime in the vortex core, respectively. These results suggest that the vortex core in YBCO is in the moderately clean regime. Investigation of the moderately clean vortex core in high-temperature superconductors is significant because physically new effects may be expected due to d-wave characteristics and to the quantum nature of cuprate superconductors. The behavior of Z_s as a function of B across the first order transition (FOT) of the vortex lattice was also investigated. Unlike Bi2Sr2CaCu2Oy (BSCCO), no distinct anomaly was observed around the FOT in YBCO. Our results suggest that the rapid increase of X_s due to the change of superfluid density at the FOT would be observed only in highly anisotropic two-dimensional vortex systems like BSCCO. We discuss these results in terms of the difference of the interlayer coupling and the energy scale between the two materials.
Highly disordered magnetism confined to individual weakly interacting vortices is detected by muon spin rotation in two different families of high-transition-temperature superconductors, but only in samples on the low-doping side of the low-temperatu
The pseudogap regime of high-temperature cuprates harbours diverse manifestations of electronic ordering whose exact nature and universality remain debated. Here, we show that the short-ranged charge order recently reported in the normal state of YBa
Measurements of the microwave surface impedance $Z_s(T)=R_s(T)+iX_s(T)$ and of the complex conductivity $sigma_s(T)$ of high-quality, high-$T_c$ single crystals of YBCO, BSCCO, TBCCO, and TBCO are analyzed. Experimental data of $Z_s(T)$ and $sigma_s(
We study the surface state of a doped topological crystalline insulator in the superconducting state. Motivated by Sn$_{1-x}$In$_x$Te, we consider fully gapped pair potentials and calculate the surface spectral function. It is found that mirror-prote
High resolution angle-resolved photoemission measurements are carried out to systematically investigate the effect of cleaving temperature on the electronic structure and Fermi surface of Sr$_2$RuO$_4$. Different from previous reports that high cleav