ترغب بنشر مسار تعليمي؟ اضغط هنا

Phenomenological description of the microwave surface impedance and complex conductivity of high-$T_c$ single crystals

73   0   0.0 ( 0 )
 نشر من قبل Nefyodov
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements of the microwave surface impedance $Z_s(T)=R_s(T)+iX_s(T)$ and of the complex conductivity $sigma_s(T)$ of high-quality, high-$T_c$ single crystals of YBCO, BSCCO, TBCCO, and TBCO are analyzed. Experimental data of $Z_s(T)$ and $sigma_s(T)$ are compared with calculations based on a modified two-fluid model which includes temperature-dependent quasiparticle scattering and a unique temperature variation of the density of superconducting carriers. We elucidate agreement as well as disagreement of our analysis with the salient features of the experimental data. Existing microscopic models are reviewed which are based on unconventional symmetry types of the order parameter and on novel mechanisms of quasiparticle relaxation.



قيم البحث

اقرأ أيضاً

The electromagnetic response to microwaves in the mixed state of YBa2Cu3Oy(YBCO) was measured in order to investigate the electronic state inside and outside the vortex core. The magnetic-field dependence of the complex surface impedance at low tempe ratures was in good agreement with a general vortex dynamics description assuming that the field-independent viscous damping force and the linear restoring force were acting on the vortices. In other words, both real and imaginary parts of the complex resistivity, rho_1, and rho_2, were linear in B. This is explained by theories for d-wave superconductors. Using analysis based on the Coffey-Clem description of the complex penetration depth, we estimated that the vortex viscosity eta at 10 K was (4 sim 5) times 10^{-7} Ns/m^2. This value corresponds to omega_0 tau sim 0.3 - 0.5, where omega_0 and tau are the minimal gap frequency and the quasiparticle lifetime in the vortex core, respectively. These results suggest that the vortex core in YBCO is in the moderately clean regime. Investigation of the moderately clean vortex core in high-temperature superconductors is significant because physically new effects may be expected due to d-wave characteristics and to the quantum nature of cuprate superconductors. The behavior of Z_s as a function of B across the first order transition (FOT) of the vortex lattice was also investigated. Unlike Bi2Sr2CaCu2Oy (BSCCO), no distinct anomaly was observed around the FOT in YBCO. Our results suggest that the rapid increase of X_s due to the change of superfluid density at the FOT would be observed only in highly anisotropic two-dimensional vortex systems like BSCCO. We discuss these results in terms of the difference of the interlayer coupling and the energy scale between the two materials.
185 - Julien Kermorvant 2009
Using the dielectric resonator method, we have investigated nonlinearities in the surface impedance Zs = Rs + jXs of YBa2Cu3O7 thin films at 10 GHz as function of the incident microwave power level and temperature. The use of a rutile dielectric reso nator allows us to measure the precise temperature of the films. We conclusively show that the usually observed increase of the surface resistance of YBa2Cu3O7 thin film as function of microwave power is due to local heating.
260 - S.Sarti , N.Tosoratti (1 2003
We report measurements of the complex resistivity in $YBCO$ and $MgB_2$ thin films over a continuous frequency spectrum in the microwave range, making use of a Corbino disk geometry. The paper mainly focuses on the extraction of the resistivity from raw data, displaying data analisys procedure and its limits of validity. We obtain and show resistivity curves as a function of frequency and temperature denoting a frequency dependent widening of the superconductive transition.
140 - M. S. Grbic , M. Pozek , D. Paar 2010
Microwave absorption measurements in magnetic fields from zero up to 16 T were used to determine the temperature range of superconducting fluctuations above the superconducting critical temperature T_c in YBa_2Cu_3O_{7-delta}. Measurements were perfo rmed on deeply underdoped, slightly underdoped, and overdoped single crystals. The temperature range of the superconducting fluctuations above T_c is determined by an experimental method which is free from arbitrary assumptions about subtracting the nonsuperconducting contributions to the total measured signal, and/or theoretical models to extract the unknown parameters. The superconducting fluctuations are detected in the ab-plane, and c-axis conductivity, by identifying the onset temperature T. Within the sensitivity of the method, this fluctuation regime is found only within a fairly narrow region above T_c. Its width increases from 7 K in the overdoped sample (T_c = 89 K), to at most 23 K in the deeply underdoped sample (T_c = 57 K), so that T falls well below the pseudogap temperature T*. Implications of these findings are discussed in the context of other experimental probes of superconducting fluctuations in the cuprates.
We report high-sensitivity microwave measurements of the in-plane penetration depth $lambda_{ab}$ and quasiparticle scattering rate $1/tau$ in several single crystals of hole-doped Fe-based superconductor Ba$_{1-x}$K$_x$Fe$_2$As$_2$ ($xapprox 0.55$). While power-law temperature dependence of $lambda_{ab}$ with the power $sim 2$ is found in crystals with large $1/tau$, we observe exponential temperature dependence of superfluid density consistent with the existence of fully opened two gaps in the cleanest crystal we studied. The difference may be a consequence of different level of disorder inherent in the crystals. We also find a linear relation between the low-temperature scattering rate and the density of quasiparticles, which shows a clear contrast to the case of d-wave cuprate superconductors with nodes in the gap. These results demonstrate intrinsically nodeless order parameters in the Fe-arsenides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا