ترغب بنشر مسار تعليمي؟ اضغط هنا

Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy

129   0   0.0 ( 0 )
 نشر من قبل Marc-Henri Julien
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The pseudogap regime of high-temperature cuprates harbours diverse manifestations of electronic ordering whose exact nature and universality remain debated. Here, we show that the short-ranged charge order recently reported in the normal state of YBa2Cu3Oy corresponds to a truly static modulation of the charge density. We also show that this modulation impacts on most electronic properties, that it appears jointly with intra-unit-cell nematic, but not magnetic, order, and that it exhibits differences with the charge density wave observed at lower temperatures in high magnetic fields. These observations prove mostly universal, they place new constraints on the origin of the charge density wave and they reveal that the charge modulation is pinned by native defects. Similarities with results in layered metals such as NbSe2, in which defects nucleate halos of incipient charge density wave at temperatures above the ordering transition, raise the possibility that order-parameter fluctuations, but no static order, would be observed in the normal state of most cuprates if disorder were absent.



قيم البحث

اقرأ أيضاً

The effect of hydrostatic pressure (P) on charge density waves (CDW) in YBa2Cu3Oy has recently been controversial. Using NMR, we find that both the short-range CDW in the normal state and the long-range CDW in high fields are, at most, slightly weake ned at P=1.9 GPa. This result is in contradiction with x-ray scattering results finding complete suppression of the CDW at ~1 GPa and we discuss possible explanations of this discrepancy. Quantitative analysis, however, shows that the NMR data is not inconsistent with a disappearance of the CDW on a larger pressure scale, typically ~10-20 GPa. We also propose a simple model reconciling transport data with such a hypothesis, provided the pressure-induced change in doping is taken into account. We conclude that it is therefore possible that most of the spectacular increase in Tc upon increasing pressure up to ~15~GPa arises from a concomitant decrease of CDW strength.
We report 139La, 57Fe and 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on powders of the new LaO1-xFxFeAs superconductor for x = 0 and x = 0.1 at temperatures up to 480 K, and compare our measured NQR spec tra with local density approximation (LDA) calculations. For all three nuclei in the x = 0.1 material, it is found that the local Knight shift increases monotonically with an increase in temperature, and scales with the macroscopic susceptibility, suggesting a single magnetic degree of freedom. Surprisingly, the spin lattice relaxation rates for all nuclei also scale with one another, despite the fact that the form factors for each site sample different regions of q-space. This result suggests a lack of any q-space structure in the dynamical spin susceptibility that might be expected in the presence of antiferromagnetic correlations. Rather, our results are more compatible with simple quasi-particle scattering. Furthermore, we find that the increase in the electric field gradient at the As cannot be accounted for by LDA calculations, suggesting that structural changes, in particular the position of the As in the unit cell, dominate the NQR response.
Superconductivity often emerges in the proximity of, or in competition with, symmetry breaking ground states such as antiferromagnetism or charge density waves (CDW)1-5. A number of materials in the cuprate family, which includes the high-transition- temperature (high-Tc) superconductors, show spin and charge density wave order5-7. Thus a fundamental question is to what extent these ordered states exist for compositions close to optimal for superconductivity. Here we use high-energy x-ray diffraction to show that a CDW develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc = 67 K). Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. Hence, the CDW and superconductivity are competing orders in this typical high-Tc superconductor, and high-Tc superconductivity can form from a pre-existing CDW state. Our results explain observations of small Fermi surface pockets8, negative Hall and Seebeck effect9,10 and the Tc plateau11 in this material when underdoped.
We report systematic 57Fe-NMR and 75As-NMR/NQR studies on an underdoped sample (T_c=20 K), an optimally doped sample (T_c=28 K), and an overdoped sample (T_c=22 K) of oxygen-deficient iron (Fe)-based oxypnictide superconductor LaFeAsO_{1-y}$. A micro scopic phase separation between superconducting domains and magnetic domains is shown to take place in the underdoped sample, indicating a local inhomogeneity in association with the density distribution of oxygen deficiencies. As a result, 1/T_1T in the normal state of the superconducting domain decreases significantly upon cooling at both the Fe and As sites regardless of the electron-doping level in LaFeAsO_{1-y}. On the basis of this result, we claim that $1/T_1T$ is not always enhanced by antiferromagnetic fluctuations close to an antiferromagnetic phase in the underdoped superconducting sample. This contrasts with the behavior in hole-doped Ba_{0.6}K_{0.4}Fe2As2(T_c= 38 K), which exhibits a significant increase in $1/T_1T$ upon cooling. We remark that the crucial difference between the normal-state properties of LaFeAsO_{1-y} and Ba_{0.6}K_{0.4}Fe2As2 originates from the fact that the relevant Fermi surface topologies are differently modified depending on whether electrons or holes are doped into the FeAs layers.
We present the first infrared and optical study in the normal state of ab-plane oriented single crystals of the iron-oxypnictide superconductor LaFePO. We find that this material is a low carrier density metal with a moderate level of correlations an d exhibits signatures of electron-boson coupling. The data is consistent with the presence of coherent quasiparticles in LaFePO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا