ﻻ يوجد ملخص باللغة العربية
The pseudogap regime of high-temperature cuprates harbours diverse manifestations of electronic ordering whose exact nature and universality remain debated. Here, we show that the short-ranged charge order recently reported in the normal state of YBa2Cu3Oy corresponds to a truly static modulation of the charge density. We also show that this modulation impacts on most electronic properties, that it appears jointly with intra-unit-cell nematic, but not magnetic, order, and that it exhibits differences with the charge density wave observed at lower temperatures in high magnetic fields. These observations prove mostly universal, they place new constraints on the origin of the charge density wave and they reveal that the charge modulation is pinned by native defects. Similarities with results in layered metals such as NbSe2, in which defects nucleate halos of incipient charge density wave at temperatures above the ordering transition, raise the possibility that order-parameter fluctuations, but no static order, would be observed in the normal state of most cuprates if disorder were absent.
The effect of hydrostatic pressure (P) on charge density waves (CDW) in YBa2Cu3Oy has recently been controversial. Using NMR, we find that both the short-range CDW in the normal state and the long-range CDW in high fields are, at most, slightly weake
We report 139La, 57Fe and 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on powders of the new LaO1-xFxFeAs superconductor for x = 0 and x = 0.1 at temperatures up to 480 K, and compare our measured NQR spec
Superconductivity often emerges in the proximity of, or in competition with, symmetry breaking ground states such as antiferromagnetism or charge density waves (CDW)1-5. A number of materials in the cuprate family, which includes the high-transition-
We report systematic 57Fe-NMR and 75As-NMR/NQR studies on an underdoped sample (T_c=20 K), an optimally doped sample (T_c=28 K), and an overdoped sample (T_c=22 K) of oxygen-deficient iron (Fe)-based oxypnictide superconductor LaFeAsO_{1-y}$. A micro
We present the first infrared and optical study in the normal state of ab-plane oriented single crystals of the iron-oxypnictide superconductor LaFePO. We find that this material is a low carrier density metal with a moderate level of correlations an