ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-charge separation: From one hole to finite doping

77   0   0.0 ( 0 )
 نشر من قبل Z. Y. Weng
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the presence of nonlocal phase shift effects, a quasiparticle can remain topologically stable even in a spin-charge separation state due to the confinement effect introduced by the phase shifts at finite doping. True deconfinement only happens in the zero-doping limit where a bare hole can lose its integrity and decay into holon and spinon elementary excitations. The Fermi surface structure is completely different in these two cases, from a large band-structure-like one to four Fermi points in one-hole case, and we argue that the so-called underdoped regime actually corresponds to a situation in between.



قيم البحث

اقرأ أيضاً

We report on measurements of quantum many-body modes in ballistic wires and their dependence on Coulomb interactions, obtained from tunneling between two parallel wires in a GaAs/AlGaAs heterostructure while varying electron density. We observe two s pin modes and one charge mode of the coupled wires, and map the dispersion velocities of the modes down to a critical density, at which spontaneous localization is observed. Theoretical calculations of the charge velocity agree well with the data, although they also predict an additional charge mode that is not observed. The measured spin velocity is found to be smaller than theoretically predicted.
133 - Julian Rincon , K. Hallberg , 2008
We study the conductance through Aharonov-Bohm finite ladder rings with strongly interacting electrons, modelled by the prototypical t-J model. For a wide range of parameters we observe characteristic dips in the conductance as a function of magnetic flux, predicted so far only in chains which are a signature of spin and charge separation. These results open the possibility of observing this peculiar many-body phenomenon in anisotropic ladder systems and in real nanoscopic devices.
The motion of a single hole in a Mott antiferromagnet is investigated based on the t-J model. An exact expression of the energy spectrum is obtained, in which the irreparable phase string effect [Phys. Rev. Lett. 77, 5102 (1996)] is explicitly presen t. By identifying the phase string effect with spin backflow, we point out that spin-charge separation must exist in such a system: the doped hole has to decay into a neutral spinon and a spinless holon, together with the phase string. We show that while the spinon remains coherent, the holon motion is deterred by the phase string, resulting in its localization in space. We calculate the electron spectral function which explains the line shape of the spectral function as well as the ``quasiparticle spectrum observed in angle-resolved photoemission experiments. Other analytic and numerical approaches are discussed based on the present framework.
Recent experimental discoveries have brought a diverse set of broken symmetry states to the center stage of research on cuprate superconductors. Here, we focus on a thematic understanding of the diverse phenomenology by exploring a strong-coupling me chanism of symmetry breaking driven by frustration of antiferromagnetic order. We achieve this through a variational study of a three-band model of the CuO$_2$ plane with Kondo-type exchange couplings between doped oxygen holes and classical copper spins. Two main findings from this strong-coupling multi-band perspective are 1) that the symmetry hierarchy of spin stripe, charge stripe, intra-unit-cell nematic order and isotropic phases are all accessible microscopically within the model, 2) many symmetry-breaking patterns compete with energy differences within a few meV per Cu atom to produce a rich phase diagram. These results indicate that the diverse phenomenology of broken-symmetry states in hole-doped antiferromagnetic charge-transfer insulators may indeed arise from hole-doped frustration of antiferromagnetism.
110 - Julian Rincon , A. A. Aligia , 2008
We calculate the conductance through rings with few sites $L$ described by the $t-J$ model, threaded by a magnetic flux $Phi$ and weakly coupled to conducting leads at two arbitrary sites. The model can describe a circular array of quantum dots with large charging energy $U$ in comparison with the nearest-neighbor hopping $t$. We determine analytically the particular values of $Phi$ for which a depression of the transmittance is expected as a consequence of spin-charge separation. We show numerically that the equilibrium conductance at zero temperature is depressed at those particular values of $Phi $ for most systems, in particular at half filling, which might be easier to realize experimentally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا