ﻻ يوجد ملخص باللغة العربية
We report on measurements of quantum many-body modes in ballistic wires and their dependence on Coulomb interactions, obtained from tunneling between two parallel wires in a GaAs/AlGaAs heterostructure while varying electron density. We observe two spin modes and one charge mode of the coupled wires, and map the dispersion velocities of the modes down to a critical density, at which spontaneous localization is observed. Theoretical calculations of the charge velocity agree well with the data, although they also predict an additional charge mode that is not observed. The measured spin velocity is found to be smaller than theoretically predicted.
We study the influence of spin on the quantum interference of interacting electrons in a single-channel disordered quantum wire within the framework of the Luttinger liquid (LL) model. The nature of the electron interference in a spinful LL is partic
In a one-dimensional (1D) system of interacting electrons, excitations of spin and charge travel at different speeds, according to the theory of a Tomonaga-Luttinger Liquid (TLL) at low energies. However, the clear observation of this spin-charge sep
In the presence of nonlocal phase shift effects, a quasiparticle can remain topologically stable even in a spin-charge separation state due to the confinement effect introduced by the phase shifts at finite doping. True deconfinement only happens in
Quasiparticle properties are explored in an effective theory of the $t-J$ model which includes two important components: spin-charge separation and unrenormalizable phase shift. We show that the phase shift effect indeed causes the system to be a non
What happens to spin-polarised electrons when they enter a superconductor? Superconductors at equilibrium and at finite temperature contain both paired particles (of opposite spin) in the condensate phase as well as unpaired, spin-randomised quasipar