ﻻ يوجد ملخص باللغة العربية
We introduce an efficient dynamical tree method that enables us, for the first time, to explicitly demonstrate thermo-remanent magnetization memory effect in a hierarchical energy landscape. Our simulation nicely reproduces the nontrivial waiting-time and waiting-temperature dependences in this non-equilibrium phenomenon. We further investigate the condensation effect, in which a small set of micro-states dominates the thermodynamic behavior, in the multi-layer trap model. Importantly, a structural phase transition of the tree is shown to coincide with the onset of condensation phenomenon. Our results underscore the importance of hierarchical structure and demonstrate the intimate relation between glassy behavior and structure of barrier trees.
We study the phase transition of the $pm J$ Heisenberg model in three dimensions. Using a dynamical simulation method that removes a drift of the system, the existence of the spin-glass (SG) phase at low temperatures is suggested. The transition temp
Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass transition. However, spin glasses differ from structural glasses for a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by appl
We show theoretically that spin and orbital degrees of freedom in the pyrochlore oxide Y2Mo2O7, which is free of quenched disorder, can exhibit a simultaneous glass transition, working as dynamical randomness to each other. The interplay of spins and
The locations of multicritical points on many hierarchical lattices are numerically investigated by the renormalization group analysis. The results are compared with an analytical conjecture derived by using the duality, the gauge symmetry and the re
Numerical simulations on Ising Spin Glasses show that spin glass transitions do not obey the usual universality rules which hold at canonical second order transitions. On the other hand the dynamics at the approach to the transition appear to take up