ﻻ يوجد ملخص باللغة العربية
We consider a modified extended Hubbard model (EHM) which, in addition to the on-site repulsion U and nearest-neighbor repulsion V, includes polarization effects in second-order perturbation theory. The model is equivalent to an EHM with renormalized U plus a next-nearest-neighbor repulsion term. Using a method based on topological quantum numbers (charge and spin Berry phases), we generalize to finite hopping t the quantum phase diagram in one dimension constructed by van den Brink et al. (Phys. Rev. Lett. 75, 4658 (1995)). At hopping t=0 there are two charge density-wave phases, one spin density-wave phase and one intermediate phase with charge and spin ordering, depending on the parameter values. At t eq 0 the nature of each phase is confirmed by studying correlation functions. However, in addition to the strong-coupling phases, a small region with bond ordering appears. The region occupied by the intermediate phase first increases and then decreases with increasing t, until it finally disappears for t of the order but larger than U. For small t, the topological transitions agree with the results of second order perturbation theory.
By using Density Matrix Renormalization Group (DMRG) technique we study the phase diagram of 1D extended anisotropic Heisenberg model with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions. We analyze the static
We discuss the phase diagram of the extended Hubbard model with both attractive and repulsive local and nonlocal interactions. The extended dynamical mean-field theory (EDMFT) and the dual boson method (DB) are compared. The latter contains additiona
We demonstrate that supervised machine learning (ML) with entanglement spectrum can give useful information for constructing phase diagram in the half-filled one-dimensional extended Hubbard model. Combining ML with infinite-size density-matrix renor
The finite-temperature phase diagram of the Hubbard model in $d=3$ is obtained from renormalization-group analysis. It exhibits, around half filling, an antiferromagnetic phase and, between 30%--40% electron or hole doping from half filling, a new $t
Transition metal chalcogenide Ta$_2$NiSe$_5$, a promising material for the excitonic insulator, is investigated on the basis of the quasi-one-dimensional three-chain Hubbard model with two conduction ($c$) bands and one valence ($f$) band. In the sem