ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural and Dynamical Anomalies of a Gaussian Core Fluid: a Mode Coupling Theory Study

119   0   0.0 ( 0 )
 نشر من قبل Sergei Egorov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theoretical study of transport properties of a liquid comprised of particles uist1:/home/sokrates/egorov/oldhome/Pap41/Submit > m abs.tex We present a theoretical study of transport properties of a liquid comprised of particles interacting via Gaussian Core pair potential. Shear viscosity and self-diffusion coefficient are computed on the basis of the mode-coupling theory, with required structural input obtained from integral equation theory. Both self-diffusion coefficient and viscosity display anomalous density dependence, with diffusivity increasing and viscosity decreasing with density within a particular density range along several isotherms below a certain temperature. Our theoretical results for both transport coefficients are in good agreement with the simulation data.

قيم البحث

اقرأ أيضاً

Using the molecular dynamics simulations we investigate properties of velocity autocorrelation function of Lennard-Jones fluid at long and intermediate time scales in wide ranges of temperature and density. We show that the amplitudes of the leading and subleading VAF time asymptotes, $a_1$ and $a_2$, show essentially non monotonous temperature and density dependence. There are two lines on temperature-density plain corresponding to maxima of $a_1$ ($a_2$) along isochors and isotherms situated in the supercritical fluid (hydrodynamic anomalies). These lines give insight into the stages of the fluid evolution into gas.
As liquids approach the glass transition temperature, dynamical heterogeneity emerges as a crucial universal feature of their behavior. Dynamic facilitation, where local motion triggers further motion nearby, plays a major role in this phenomenon. He re we show that long-range, elastically-mediated facilitation appears below the mode-coupling temperature, adding to the short-range component present at all temperatures. Our results suggest deep connections between the supercooled liquid and glass states, and pave the way for a deeper understanding of dynamical heterogeneity in glassy systems.
To study the possibility of a fluid-fluid phase transition, we analyze a three-dimensional soft-core isotropic potential for a one-component system. We utilize two independent numerical approaches, (i) integral equation in the hypernetted-chain appro ximation and (ii) molecular dynamics simulations, and find for both approaches a fluid-fluid phase transition as well as the conventional gas-liquid critical point. We also study the possible existence of a triple point in the supercooled fluid phase at which three phases---gas, high-density fluid, and low-density fluid---coexist.
Within the mode-coupling theory (MCT) of the glass transition, we reconsider the numerical schemes to evaluate the MCT functional. Here we propose nonuniform discretizations of the wave number, in contrast to the standard equidistant grid, in order t o decrease the number of grid points without losing accuracy. We discuss in detail how the integration scheme on the new grids has to be modified from standard Riemann integration. We benchmark our approach by solving the MCT equations numerically for mono-disperse hard disks and hard spheres and by computing the critical packing fraction and the nonergodicity parameters. Our results show that significant improvements in performance can be obtained by employing a nonuniform grid.
105 - S. Prestipino , F. Saija , 2005
We trace with unprecedented numerical accuracy the phase diagram of the Gaussian-core model, a classical system of point particles interacting via a Gaussian-shaped, purely repulsive potential. This model, which provides a reliable qualitative descri ption of the thermal behavior of interpenetrable globular polymers, is known to exhibit a polymorphic FCC-BCC transition at low densities and reentrant melting at high densities. Extensive Monte Carlo simulations, carried out in conjunction with accurate calculations of the solid free energies, lead to a thermodynamic scenario that is partially modified with respect to previous knowledge. In particular, we find that: i) the fluid-BCC-FCC triple-point temperature is about one third of the maximum freezing temperature; ii) upon isothermal compression, the model exhibits a fluid-BCC-FCC-BCC-fluid sequence of phases in a narrow range of temperatures just above the triple point. We discuss these results in relation to the behavior of star-polymer solutions and of other softly repulsive systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا