ﻻ يوجد ملخص باللغة العربية
We present an approximation for efficient calculation of the Lindhard susceptibility $chi^{L}(q,omega)$ in a periodic system through the use of simple products of real space functions and the fast Fourier transform (FFT). The method is illustrated by providing $chi^{L}(q,omega)$ results for the electron doped cuprate Nd$_{2-x}$Ce$_{x}$CuO$_{4}$ extended over several Brillouin zones. These results are relevant for interpreting inelastic X-ray scattering spectra from cuprates.
We investigate the electron momentum distribution function (EMD) in a weakly doped two-dimensional quantum antiferromagnet (AFM) as described by the t-J model. Our analytical results for a single hole in an AFM based on the self-consistent Born appro
We have studied the evolution of magnetic and orbital excitations as a function of hole-doping in single crystal samples of Sr2Ir(1-x)Rh(x)O4 (0.07 < x < 0.42) using high resolution Ir L3-edge resonant inelastic x-ray scattering (RIXS). Within the an
We study the quantum transition from an antiferromagnet to a superconductor in a model for electron- and hole-doped cuprates by means of a variational cluster perturbation theory approach. In both cases, our results suggest a tendency towards phase s
We report magnetoresistance and Hall Effect results for electron-doped films of the high-temperature superconductor La$_{2-x}$Ce$_x$CuO$_4$ (LCCO) for temperatures from 0.7 to 45 K and magnetic fields up to 65 T. For x = 0.12 and 0.13, just below the
After three decades of enormous scientific inquiry, the emergence of superconductivity in the cuprates remains an unsolved puzzle. One major challenge has been to arrive at a satisfactory understanding of the unusual metallic normal state from which