ﻻ يوجد ملخص باللغة العربية
The low temperature specific heat C(H) of several rare-earth manganites (La_(0.7)Sr_(0.3)MnO_(3), Nd_(0.5)Sr_(0.5)MnO_(3), Pr_(0.5)Sr_(0.5)MnO_(3), La_(0.67)Ca_(0.33)MnO$_(3), La_(0.5)Ca_(0.5)MnO_(3), La_(0.45)Ca_(0.55)MnO_(3) and La_(0.33)Ca_(0.67)MnO_(3)) was measured as a function of magnetic field. We observed behaviour consistent with thermodynamic expectations, i.e., C(H) decreases with field for ferromagnetic metallic compounds by an amount which is in quantitative agreement with spin wave theory. We also find that C(H) increases with field in most compounds with a charge-ordered antiferromagnetic ground state. In compounds which show evidence of a coexistence of ferromagnetic metallic and antiferromagnetic charge-ordered states, C(H) displays some unusual non-equilibrium effects presumably associated with the phase-separation of the two states. We also observe a large anomalous low temperature specific heat at the doping induced metal-insulator transition (at x = 0.50) in La_(1-x)Ca_(x)MnO_(3).
We present a study of the magnetoresistance, the specific heat and the magnetocaloric effect of equiatomic $RET$Mg intermetallics with $RE = {rm La}$, Eu, Gd, Yb and $T = {rm Ag}$, Au and of GdAuIn. Depending on the composition these compounds are pa
We study the mechanism of orbital-order melting observed at temperature T_OO in the series of rare-earth manganites. We find that many-body super-exchange yields a transition-temperature T_KK that decreases with decreasing rare-earth radius, and incr
We report a high-pressure study of orthorhombic rare-earth manganites AMnO3 using Raman scattering (for A = Pr, Nd, Sm, Eu, Tb and Dy) and synchrotron X-ray diffraction (for A = Pr, Sm, Eu, and Dy). In all cases, a structural and insulator-to-metal t
The gap structure of Sr$_2$RuO$_4$, which is a longstanding candidate for a chiral p-wave superconductor, has been investigated from the perspective of the dependence of its specific heat on magnetic field angles at temperatures as low as 0.06 K ($si
Domain walls (DWs) in ferroic materials, across which the order parameter abruptly changes its orientation, can host emergent properties that are absent in the bulk domains. Using a broadband ($10^6-10^{10}$ Hz) scanning impedance microscope, we show