ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for gap zeros in Sr2RuO4 via field-angle-dependent specific-heat measurement

328   0   0.0 ( 0 )
 نشر من قبل Shunichiro Kittaka
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The gap structure of Sr$_2$RuO$_4$, which is a longstanding candidate for a chiral p-wave superconductor, has been investigated from the perspective of the dependence of its specific heat on magnetic field angles at temperatures as low as 0.06 K ($sim 0.04T_{rm c}$). Except near $H_{rm c2}$, its fourfold specific-heat oscillation under an in-plane rotating magnetic field is unlikely to change its sign down to the lowest temperature of 0.06 K. This feature is qualitatively different from nodal quasiparticle excitations of a quasi-two-dimensional superconductor possessing vertical lines of gap minima. The overall specific-heat behavior of Sr$_2$RuO$_4$ can be explained by Doppler-shifted quasiparticles around horizontal line nodes on the Fermi surface, whose in-plane Fermi velocity is highly anisotropic, along with the occurrence of the Pauli-paramagnetic effect. These findings, in particular, the presence of horizontal line nodes in the gap, call for a reconsideration of the order parameter of Sr$_2$RuO$_4$.

قيم البحث

اقرأ أيضاً

In order to identify the gap structure of CeIrIn5, we measured field-angle-resolved specific heat C(phi) by conically rotating the magnetic field H around the c axis at low temperatures down to 80 mK. We revealed that C(phi) exhibits a fourfold angul ar oscillation, whose amplitude decreases monotonically by tilting H out of the ab plane. Detailed microscopic calculations based on the quasiclassical Eilenberger equation confirm that the observed features are uniquely explained by assuming the dx2-y2-wave gap. These results strongly indicate that CeIrIn5 is a dx2-y2-wave superconductor and suggest the universal pairing mechanism in CeMIn5 (M = Co, Rh, and Ir).
We report the field-orientation dependent specific heat of the spin-triplet superconductor Sr2RuO4 under the magnetic field aligned parallel to the RuO2 planes with high accuracy. Below about 0.3 K, striking 4-fold oscillations of the density of stat es reflecting the superconducting gap structure have been resolved for the first time. We also obtained strong evidence of multi-band superconductivity and concluded that the superconducting gap in the active band, responsible for the superconducting instability, is modulated with a minimum along the [100] direction.
The field-angle-resolved specific heat C(T,H,phi) of the f-electron superconductor CeRu2 (Tc=6.3 K) has been measured at low temperatures down to 90 mK on two single crystals of slightly different qualities. We reveal that the C(phi) oscillation in a rotating magnetic field, originating from the gap anisotropy, diminishes at low temperatures below the characteristic field H*, as expected for an anisotropic gap without nodes. We also observe the suppression of H* by decreasing the gap anisotropy ratio $Delta_{rm min}/Delta_{rm max}$, a behavior that has been predicted from a microscopic theory for anisotropic s-wave superconductors. The present technique is established as a powerful tool for investigating minimum-gap structures as well as nodal structures.
We investigate the specific heat of ultra-pure single crystals of Sr2RuO4, a leading candidate of a spin-triplet superconductor. We for the first time obtained specific-heat evidence of the first-order superconducting transition below 0.8 K, namely d ivergent-like peaks and clear hysteresis in the specific heat at the upper critical field. The first-order transition occurs for all in-plane field directions. The specific-heat features for the first-order transition are found to be highly sensitive to sample quality; in particular, the hysteresis becomes totally absent in a sample with slightly lower quality. These thermodynamic observations provide crucial bases to understand the unconventional pair-breaking effect responsible for the first-order transition.
We have investigated the field-angle variation of the specific heat C(H, phi, theta) of the heavy-fermion superconductor UPt3 at low temperatures T down to 50 mK, where phi and theta denote the azimuthal and polar angles of the magnetic field H, resp ectively. For T = 88 mK, C(H, theta=90) increases proportionally to H^{1/2} up to nearly the upper critical field Hc2, indicating the presence of line nodes. By contrast, C(H, theta=0) deviates upward from the H^{1/2} dependence for (H/Hc2)^{1/2} > 0.5. This behavior can be related to the suppression of Hc2 along the c direction, whose origin has not been resolved yet. Our data show that the unusual Hc2 limit becomes marked only when theta is smaller than 30. In order to explore the possible vertical line nodes in the gap structure, we measured the phi dependence of C in wide T and H ranges. However, we did not observe any in-plane angular oscillation of C within the accuracy of dC/C~0.5%. This result implies that field-induced excitations of the heavy quasiparticles occur isotropically with respect to phi, which is apparently contrary to the recent finding of a twofold thermal-conductivity oscillation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا