ﻻ يوجد ملخص باللغة العربية
Domain walls (DWs) in ferroic materials, across which the order parameter abruptly changes its orientation, can host emergent properties that are absent in the bulk domains. Using a broadband ($10^6-10^{10}$ Hz) scanning impedance microscope, we show that the electrical response of the interlocked antiphase boundaries and ferroelectric domain walls in hexagonal rare-earth manganites ($h-RMnO_3$) is dominated by the bound-charge oscillation rather than free-carrier conduction at the DWs. As a measure of the rate of energy dissipation, the effective conductivity of DWs on the (001) surfaces of $h-RMnO_3$ at GHz frequencies is drastically higher than that at dc, while the effect is absent on surfaces with in-plane polarized domains. First-principles and model calculations indicate that the frequency range and selection rules are consistent with the periodic sliding of the DW around its equilibrium position. This acoustic-wave-like mode, which is associated with the synchronized oscillation of local polarization and apical oxygen atoms, is localized perpendicular to the DW but free to propagate along the DW plane. Our results break the ground to understand structural DW dynamics and exploit new interfacial phenomena for novel devices.
We report the nanoscale electrical imaging results in hexagonal $Lu_{0.6}Sc_{0.4}FeO_3$ single crystals using conductive atomic force microscopy (C-AFM) and scanning microwave impedance microscopy (MIM). While the dc and ac response of the ferroelect
Ferroelectric domain walls are attracting broad attention as atomic-scale switches, diodes and mobile wires for next-generation nanoelectronics. Charged domain walls in improper ferroelectrics are particularly interesting as they offer multifunctiona
We review recent studies of spin dynamics in rare-earth orthorhombic perovskite oxides of the type $RM$O$_3$, where $R$ is a rare-earth ion and $M$ is a transition-metal ion, using single-crystal inelastic neutron scattering (INS). After a short intr
Conductive ferroelectric domain walls--ultra-narrow and configurable conduction paths, have been considered as essential building blocks for future programmable domain wall electronics. For applications in high density devices, it is imperative to ex
We report a study of magnetic dynamics in multiferroic hexagonal manganite HoMnO3 by far-infrared spectroscopy. Low-temperature magnetic excitation spectrum of HoMnO3 consists of magnetic-dipole transitions of Ho ions within the crystal-field split J