ترغب بنشر مسار تعليمي؟ اضغط هنا

The 2-10 keV XRB dipole and its cosmological implications

43   0   0.0 ( 0 )
 نشر من قبل Caleb A. Scharf
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. A. Scharf




اسأل ChatGPT حول البحث

The hard X-ray (>2 keV) emission of the local and distant Universe as observed with the HEAO1-A2 experiment is reconsidered in the context of large scale cosmic structure. Using all-sky X-ray samples of AGN and galaxy clusters we remove the dominant local X-ray flux from within a redshift of ~ 0.02. We evaluate the dipolar and higher order harmonic structure in 4 X-ray colours. The estimated dipole anisotropy of the unresolved flux appears to be consistent with a combination of the Compton-Getting effect due to the Local Group motion (dipole amplitude Delta = 0.0042) and remaining large scale structure (0.0023 <~ Delta <~ 0.0085), in good agreement with the expectations of Cold Dark Matter models. The observed anisotropy does however also suggest a non-negligible Galactic contribution which is more complex than current, simple models of >2 keV Galactic X-ray emission. Comparison of the soft and hard colour maps with a harmonic analysis of the 1.5 keV ROSAT all-sky data qualitatively suggests that at least a third of the faint, unresolved ~ 18 deg scale structure in the HEAO1-A2 data may be Galactic in origin. However, the effect on measured flux dipoles is small (<~3%). We derive an expression for dipole anisotropy and acceleration and demonstrate how the dipole anisotropy of the distant X-ray frame can constrain the amplitude of bulk motions of the universe. From observed bulk motions over a local ~ 50 Mpc/h radius volume we determine 0.14 <~ Omega^0.6/b_x(0) <~ 0.59.

قيم البحث

اقرأ أيضاً

66 - Ila Garg 2015
Supersymmetric GUTs based on SO(10) gauge group are leading contenders to describe particle physics beyond the Standard Model. Among these the New minimal supersymmetric SO(10) grand unified theory (NMSGUT) based on Higgs system 10+120+210+126+$overl ine{126}$ has been developing since 1982. It now successfully fits the whole standard Model gauge coupling, symmetry breaking and fermion mass-mixing data as well as the neutrino mass and mixing data in terms of NMSGUT parameters and just 6 soft supersymmetry breaking parameters defined at the GUT scale. In this thesis we study the phenomenology of NMSGUT, its implications for inflationary and Cold Dark matter cosmology and develop Renormalization group(RG) equations for the flow of NMSGUT couplings in the extreme ultraviolet. In the first part we show that superheavy threshold effects can drastically lower the SO(10) yukawa couplings required for realistic unification and this cures the long standing problem of fast proton decay in Susy GUT. Then we propose a novel Supersymmetric Seesaw inflection(SSI) scenario based upon a SU(2)_L x U(1)_R x U(1)_{B-L} invariant model, where the inflation mass is controlled by the large conjugate sneutrino mass. We show that it is much less fine-tuned and more stable than Dirac sneutrino based MSSM inflation. NMSGUT can embed SSI, and even provide a large tensor scalar ratio, but obstacles in achieving enough inflation remain. The NMSGUT Bino LSP is a good dark matter candidate when it can co-annihilate with a nearly degenerate sfermion as in fits with a light smuon. We also calculate two loop NMSGUT gauge-Yukawa Renormalization Group(RG) beta functions and show that GUT scale negative Higgs mass squared parameters required by NMSGUT fits can arise by RG flows from positive values at the Planck scale.
The XMM-Newton Slew Survey (XSS) covers a significant fraction of the sky in a broad X-ray bandpass. Although shallow by contemporary standards, in the `classical 2-10 keV band of X-ray astronomy, the XSS provides significantly better sensitivity tha n any currently available all-sky survey. We investigate the source content of the XSS, focussing on detections in the 2-10 keV band down to a very low threshold (> 4 counts net of background). At the faint end, the survey reaches a flux sensitivity of roughly 3e-12 erg/cm2/s (2-10 keV). Our starting point was a sample of 487 sources detected in the XMMSL1d2 XSS at high galactic latitude in the hard band. Through cross-correlation with published source catalogues from surveys spanning the electromagnetic spectrum from radio to gamma-rays, we find that 45% of the sources have likely identifications with normal/active galaxies, 18% are associated with other classes of X-ray object (nearby coronally active stars, accreting binaries, clusters of galaxies), leaving 37% of the XSS sources with no current identification. We go on to define an XSS extragalactic hard band sample comprised of 219 galaxies and active galaxies. We investigate the properties of this extragalactic sample including its X-ray logN-logS distribution. We find that in the low-count limit, the XSS is strongly affected by Eddington bias. There is also a very strong bias in the XSS against the detection of extended sources, most notably clusters of galaxies. A significant fraction of the detections at and around the low-count limit may be spurious. Nevertheless, it is possible to use the XSS to extract a reasonably robust sample of extragalactic sources, excluding galaxy clusters. The differential logN-logS relation of these extragalactic sources matches very well to the HEAO-1 A2 all-sky survey measurements at bright fluxes and to the 2XMM source counts at the faint end.
58 - Branislav Vlahovic 2011
The cosmological redshifts z in the frequencies of spectral lines from distant galaxies as compared with their values observed in terrestrial laboratories, which are due to the scale factor a(t), frequently are interpret as a special-relativistic Dop pler shift alone. We will demonstrate that this interpretation is not correct and that the contribution of the gravitational redshift is always present and significant. We will show that the gravitational redshift is actually about the same magnitude as the cosmological redshift, but that only for cosmological models without the dark energy component cosmological and gravitational redshift can be considered to be the same. Significant contribution of the gravitational redshift due to the gravitational field of the Universe, which is ignored in interpretation of the observational data, could have significant impact on cosmological theories. We will first calculate contributions of gravitational redshift to CMB and time dilation of Type Ia supernovae, and use it to explain the excess redshifts of quasars and active galaxies, and redshifts of companion galaxies of stars. We will show its possible implications on the interpretation of mass density of matter and mass as function of cosmological time. Finally we will demonstrate that taking into account gravitational redshift allows to interpret luminosity distance and surface brightness of distant galaxies to be consistent with the static universe cosmological models.
92 - P. J. E. Peebles 2000
I review the assumptions and observations that motivate the concept of the extragalactic cosmic background radiation, and the issues of energy accounts and star formation history as a function of galaxy morphological type that figure in the interpret ation of the measurements of the extragalactic infrared background.
63 - B. Vlahovic 2013
The paradigm of Lambda CDM cosmology works impressively well and with the concept of inflation it explains the universe after the time of decoupling. However there are still a few concerns; after much effort there is no detection of dark matter and t here are significant problems in the theoretical description of dark energy. We will consider a variant of the cosmological spherical shell model, within FRW formalism and will compare it with the standard Lambda CDM model. We will show that our new topological model satisfies cosmological principles and is consistent with all observable data, but that it may require new interpretation for some data. Considered will be constraints imposed on the model, as for instance the range for the size and allowed thickness of the shell, by the supernovae luminosity distance and CMB data. In this model propagation of the light is confined along the shell, which has as a consequence that observed CMB originated from one point or a limited space region. It allows to interpret the uniformity of the CMB without inflation scenario. In addition this removes any constraints on the uniformity of the universe at the early stage and opens a possibility that the universe was not uniform and that creation of galaxies and large structures is due to the inhomogeneities that originated in the Big Bang.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا