ترغب بنشر مسار تعليمي؟ اضغط هنا

New minimal supersymmetric SO(10) GUT phenomenology and its cosmological implications

65   0   0.0 ( 0 )
 نشر من قبل Ila Garg
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Ila Garg




اسأل ChatGPT حول البحث

Supersymmetric GUTs based on SO(10) gauge group are leading contenders to describe particle physics beyond the Standard Model. Among these the New minimal supersymmetric SO(10) grand unified theory (NMSGUT) based on Higgs system 10+120+210+126+$overline{126}$ has been developing since 1982. It now successfully fits the whole standard Model gauge coupling, symmetry breaking and fermion mass-mixing data as well as the neutrino mass and mixing data in terms of NMSGUT parameters and just 6 soft supersymmetry breaking parameters defined at the GUT scale. In this thesis we study the phenomenology of NMSGUT, its implications for inflationary and Cold Dark matter cosmology and develop Renormalization group(RG) equations for the flow of NMSGUT couplings in the extreme ultraviolet. In the first part we show that superheavy threshold effects can drastically lower the SO(10) yukawa couplings required for realistic unification and this cures the long standing problem of fast proton decay in Susy GUT. Then we propose a novel Supersymmetric Seesaw inflection(SSI) scenario based upon a SU(2)_L x U(1)_R x U(1)_{B-L} invariant model, where the inflation mass is controlled by the large conjugate sneutrino mass. We show that it is much less fine-tuned and more stable than Dirac sneutrino based MSSM inflation. NMSGUT can embed SSI, and even provide a large tensor scalar ratio, but obstacles in achieving enough inflation remain. The NMSGUT Bino LSP is a good dark matter candidate when it can co-annihilate with a nearly degenerate sfermion as in fits with a light smuon. We also calculate two loop NMSGUT gauge-Yukawa Renormalization Group(RG) beta functions and show that GUT scale negative Higgs mass squared parameters required by NMSGUT fits can arise by RG flows from positive values at the Planck scale.

قيم البحث

اقرأ أيضاً

The Supersymmetric SO(10) theory (NMSO(10)GUT) based on thehfilbreak ${bf{210+126 +oot}}$ Higgs system proposed in 1982 has evolved into a realistic theory capable of fitting the known low energy Particle Physics data besides providing a Dark matter candidate and embedding Inflationary Cosmology. It dynamically resolves longstanding issues such as fast dimension five operator mediated proton decay in Susy GUTs by allowing explicit and complete calculation of crucial threshold effects at $M_{Susy}$ and $M_{GUT}$ in terms of fundamental parameters. This shows that SO(10) Yukawas responsible for observed fermion masses as well as operator dimension 5 mediated proton decay can be highly suppressed on a Higgs dissolution edge in the parameter space of GUTs with rich superheavy spectra. This novel and generically relevant result highlights the need for every realistic UV completion model with a large/infinite number of heavy fields coupled to the light Higgs doublets to explicitly account for the large wave function renormalization effects on emergent light Higgs fields in order to be considered a quantitatively well defined candidate UV completion. The NMSGUT predicts large soft Susy breaking trilinear couplings and distinctive sparticle spectra. Measurable or near measurable level of tensor perturbations- and thus large Inflaton mass scale- may be accommodated by Supersymetric Seesaw inflation within the NMSGUT based on an LHN flat direction Inflaton if the Higgs component contains contributions from heavy Higgs components. Successful NMSGUT fits suggest a emph{renormalizable} Yukawon Ultra minimal gauged theory of flavor based upon the NMSGUT Higgs structure.
We show that generic $ {bf{10oplus 120oplus {bar {126}}}}$ fits of fermion masses and mixings, using real superpotential couplings but with complex `Higgs fractions leading to complex yukawa couplings in the effective MSSM, emph{overdetermine}(by one extra constraint) the superpotential parameters of the New Minimal Supersymmetric SO(10) GUTcite{nmsgut}. Therefore fits should properly be done by generating the 24 generic fit parameters from the 23 parameters of the NMSGUT superpotential, given $tanbeta$ as input. Each numerical fit then emph{fully specifies} the parameters of the NMSGUT. An analysis of all its implications, modulo only the residual uncertainty of supersymmetry breaking parameters, is now feasible. Thus the NMSGUT offers the possibility of a confrontation between the scale of gauge unification and the fit to fermion masses due to their extractable common dependence on the NMSGUT parameters. If and when `smoking gun discoveries of Supersymmetry and Proton decay occur they will find the NMSGUT fully vulnerable to falsification.
126 - Zurab Tavartkiladze 2018
Within the supersymmetric SO(10) grand unified theory (GUT), a new mechanism, giving the light Higgs doublet as a pseudo-Goldstone mode, is suggested. Realizing this mechanism, we present an explicit model with fully realistic phenomenology. In parti cular, desirable symmetry breaking and natural all-order hierarchy are achieved. The constructed model allows one to have a realistic fermion pattern, nucleon stability, and successful gauge coupling unification. The suggested mechanism opens prospects in the field for a novel $SO(10)$ GUT model building and for further investigations.
Supersymmetric $SO(10)$ grand unified models with renormalizable Yukawa couplings involving only ${bf 10}$ and $overline{bf 126}$ Higgs fields have been shown to realize the fermion masses and mixings economically. In previous works, the sum rule of the fermion mass matrices are given by inputting the quark matrices, and the neutrino mixings are predicted in this framework. Now the three neutrino mixings have been measured, and in this paper, we give the sum rule by inputting the lepton mass matrices, which makes clear certain features of the solution, especially if the vacuum expectation values of ${bf 126}+ overline{bf126}$ ($v_R$) are large and the right-handed neutrinos are heavy. We perform the $chi^2$ analyses to fit the fermion masses and mixings using the sum rule. In previous works, the best fit appears at $v_R sim 10^{13}$ GeV, and the fit at the large $v_R$ scale ($sim 10^{16}$ GeV) has been less investigated. Our expression of the sum rule has a benefit to understand the flavor structure in the large $v_R$ solution. Using the fit results, we perform the calculation of the $mu to egamma$ process and the electric dipole moment of electron, and the importance of $v_R$ dependence emerges in low energy phenomena. We also show the prediction of the CP phase in the neutrino oscillations, which can be tested in the near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا