ترغب بنشر مسار تعليمي؟ اضغط هنا

New Cosmological Model and Its Implications on Observational Data Interpretation

63   0   0.0 ( 0 )
 نشر من قبل Branislav Vlahovic
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Vlahovic




اسأل ChatGPT حول البحث

The paradigm of Lambda CDM cosmology works impressively well and with the concept of inflation it explains the universe after the time of decoupling. However there are still a few concerns; after much effort there is no detection of dark matter and there are significant problems in the theoretical description of dark energy. We will consider a variant of the cosmological spherical shell model, within FRW formalism and will compare it with the standard Lambda CDM model. We will show that our new topological model satisfies cosmological principles and is consistent with all observable data, but that it may require new interpretation for some data. Considered will be constraints imposed on the model, as for instance the range for the size and allowed thickness of the shell, by the supernovae luminosity distance and CMB data. In this model propagation of the light is confined along the shell, which has as a consequence that observed CMB originated from one point or a limited space region. It allows to interpret the uniformity of the CMB without inflation scenario. In addition this removes any constraints on the uniformity of the universe at the early stage and opens a possibility that the universe was not uniform and that creation of galaxies and large structures is due to the inhomogeneities that originated in the Big Bang.

قيم البحث

اقرأ أيضاً

58 - Branislav Vlahovic 2011
The cosmological redshifts z in the frequencies of spectral lines from distant galaxies as compared with their values observed in terrestrial laboratories, which are due to the scale factor a(t), frequently are interpret as a special-relativistic Dop pler shift alone. We will demonstrate that this interpretation is not correct and that the contribution of the gravitational redshift is always present and significant. We will show that the gravitational redshift is actually about the same magnitude as the cosmological redshift, but that only for cosmological models without the dark energy component cosmological and gravitational redshift can be considered to be the same. Significant contribution of the gravitational redshift due to the gravitational field of the Universe, which is ignored in interpretation of the observational data, could have significant impact on cosmological theories. We will first calculate contributions of gravitational redshift to CMB and time dilation of Type Ia supernovae, and use it to explain the excess redshifts of quasars and active galaxies, and redshifts of companion galaxies of stars. We will show its possible implications on the interpretation of mass density of matter and mass as function of cosmological time. Finally we will demonstrate that taking into account gravitational redshift allows to interpret luminosity distance and surface brightness of distant galaxies to be consistent with the static universe cosmological models.
66 - Ila Garg 2015
Supersymmetric GUTs based on SO(10) gauge group are leading contenders to describe particle physics beyond the Standard Model. Among these the New minimal supersymmetric SO(10) grand unified theory (NMSGUT) based on Higgs system 10+120+210+126+$overl ine{126}$ has been developing since 1982. It now successfully fits the whole standard Model gauge coupling, symmetry breaking and fermion mass-mixing data as well as the neutrino mass and mixing data in terms of NMSGUT parameters and just 6 soft supersymmetry breaking parameters defined at the GUT scale. In this thesis we study the phenomenology of NMSGUT, its implications for inflationary and Cold Dark matter cosmology and develop Renormalization group(RG) equations for the flow of NMSGUT couplings in the extreme ultraviolet. In the first part we show that superheavy threshold effects can drastically lower the SO(10) yukawa couplings required for realistic unification and this cures the long standing problem of fast proton decay in Susy GUT. Then we propose a novel Supersymmetric Seesaw inflection(SSI) scenario based upon a SU(2)_L x U(1)_R x U(1)_{B-L} invariant model, where the inflation mass is controlled by the large conjugate sneutrino mass. We show that it is much less fine-tuned and more stable than Dirac sneutrino based MSSM inflation. NMSGUT can embed SSI, and even provide a large tensor scalar ratio, but obstacles in achieving enough inflation remain. The NMSGUT Bino LSP is a good dark matter candidate when it can co-annihilate with a nearly degenerate sfermion as in fits with a light smuon. We also calculate two loop NMSGUT gauge-Yukawa Renormalization Group(RG) beta functions and show that GUT scale negative Higgs mass squared parameters required by NMSGUT fits can arise by RG flows from positive values at the Planck scale.
The complete and concurrent Homestake and Kamiokande solar neutrino data sets (including backgrounds), when compared to detailed model predictions, provide no unambiguous indication of the solution to the solar neutrino problem. All neutrino-based so lutions, including time-varying models, provide reasonable fits to both the 3 year concurrent data and the full 20 year data set. A simple constant B neutrino flux reduction is ruled out at greater than the 4$sigma$ level for both data sets. While such a flux reduction provides a marginal fit to the unweighted averages of the concurrent data, it does not provide a good fit to the average of the full 20 year sample. Gallium experiments may not be able to distinguish between the currently allowed neutrino-based possibilities.
71 - K. L. Yang , J. M. Zhang 2019
The eigenstates and eigenenergies of a toy model, which arose in idealizing a local quenched tight-binding model in a previous publication [Zhang and Yang, EPL 114, 60001 (2016)], are solved analytically. This enables us to study its dynamics in a di fferent way. This model can serve as a good exercise in quantum mechanics at the undergraduate level.
65 - K. Urbanowski 2013
Recent LHC results concerning the mass of the Higgs boson indicate that the vacuum in our Universe may be unstable. We analyze properties of unstable vacuum states from the point of view of the quantum theory of unstable states. From the literature i t is known that some of false vacuum states may survive up to times when their survival probability has a non-exponential form. At times much latter than the transition time, when contributions to the survival probability of its exponential and non-exponential parts are comparable, the survival probability as a function of time $t$ has an inverse power-like form. We show that at this time region the instantaneous energy of the false vacuum states tends to the energy of the true vacuum state as $1/t^{2}$ for $t to infty$. Properties of the instantaneous energy at transition times are also analyzed for a given model. It is shown that at this time region large and rapid fluctuations of the instantaneous energy take place. This suggests analogous behavior of the cosmological constant at these time regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا