ترغب بنشر مسار تعليمي؟ اضغط هنا

Density profiles of dark matter haloes: diversity and dependence on environment

422   0   0.0 ( 0 )
 نشر من قبل Vladimir Avila Reese
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) We study the outer density profiles of dark matter haloes predicted by a generalized secondary infall model and observed in a N-body cosmological simulation of a Lambda CDM model. We find substantial systematic variations in shapes and concentrations of the halo profiles as well as a strong correlation of the profiles with the environment. In the N-body simulation, the average outer slope of the density profiles, beta (rhopropto r^{-beta}), of isolated haloes is approx 2.9; 68% of these haloes have values of beta between 2.5 and 3.8. Haloes in dense environments of clusters are more concentrated and exhibit a broad distribution of beta with values larger than for isolated haloes . Contrary to what one may expect, the haloes contained within groups and galaxy systems are less concentrated and have flatter outer density profiles than the isolated haloes. The concentration decreases with M_h, but its scatter for a given mass is substantial. The mass and circular velocity of the haloes are strongly correlated: M_h propto V_m^{alpha} with alpha ~ 3.3 (isolated) and ~3.5 (haloes in clusters). For M_h=10^12M_sun the rms deviations from these relations are Delta logM_h=0.12 and 0.18, respectively. Approximately 30% of the haloes are contained within larger haloes or have massive companions (larger than ~0.3 the mass of the current halo) within 3 virial radii. The remaining 70% of the haloes are isolated objects. The distribution of beta as well as the concentration-mass and M_h-V_m relations for the isolated haloes agree very well with the predictions of our seminumerical approach which is based on a generalization of the secondary infall model and on the extended Press-Schechter formalism.



قيم البحث

اقرأ أيضاً

318 - A. Del Popolo 2009
In the present paper, we improve the Extended Secondary Infall Model (ESIM) of Williams et al. (2004) to obtain further insights on the cusp/core problem. The model takes into account the effect of ordered and random angular momentum, dynamical frict ion and baryon adiabatic contraction in order to obtain a secondary infall model more close to the collapse reality. The model is applied to structures on galactic scales (normal and dwarf spiral galaxies) and on cluster of galaxies scales. The results obtained suggest that angular momentum and dynamical friction are able, on galactic scales, to overcome the competing effect of adiabatic contraction eliminating the cusp. The NFW profile can be reobtained, in our model only if the system is constituted just by dark matter and the magnitude of angular momentum and dynamical friction are reduced with respect to the values predicted by the model itself. The rotation curves of four LSB galaxies from de Blok & Bosma (2002) are compared to the rotation curves obtained by the model in the present paper obtaining a good fit to the observational data. On scales smaller than $simeq 10^{11} h^{-1} M_{odot}$ the slope $alpha simeq 0$ and on cluster scales we observe a similar evolution of the dark matter density profile but in this case the density profile slope flattens to $alpha simeq 0.6$ for a cluster of $simeq 10^{14} h^{-1} M_{odot}$. The total mass profile, differently from that of dark matter, shows a central cusp well fitted by a NFW model.
189 - Darren Reed 2003
We use numerical simulations in a Lambda CDM cosmology to model density profiles in a set of 16 dark matter haloes with resolutions of up to 7 million particles within the virial radius. These simulations allow us to follow robustly the formation and evolution of the central cusp over a large mass range of 10^11 to 10^14 M_sun, down to approximately 0.5% of the virial radius, and from redshift 5 to the present. The cusp of the density profile is set at redshifts of 2 or greater and remains remarkably stable to the present time, when considered in non-comoving coordinates. We fit our haloes to a 2 parameter profile where the steepness of the asymptotic cusp is given by gamma, and its radial extent is described by the concentration, c_gamma. In our simulations, we find gamma = 1.4 - 0.08Log(M/M_*) for haloes of 0.01M_* to 1000M_*, with a large scatter of gamma ~ +/-0.3$; and c_gamma = 8*M/M_*^{-0.15}, with a large M/M_* dependent scatter roughly equal to +/- c_gamma. Our redshift zero haloes have inner slope parameters ranging approximately from r^{-1} to r^{-1.5}, with a median of roughly r^{-1.3}. This 2 parameter profile fit works well for all our halo types, whether or not they show evidence of a steep asymptotic cusp. We also model a cluster in power law cosmologies of P ~ k^n (n=0,-1,-2,-2.7). We find larger concentration radii and shallower cusps for steeper n. The minimum resolved radius is well described by the mean interparticle separation. The trend of steeper and more concentrated cusps for smaller $M/M_*$ haloes clearly shows that dwarf sized Lambda CDM haloes have, on average, significantly steeper density profiles within the inner few percent of the virial radius than inferred from recent observations. Code to reproduce this profile can be downloaded from http://www.icc.dur.ac.uk/~reed/profile.html
We study dark-matter halo density profiles in a high-resolution N-body simulation of an LCDM cosmology. Our statistical sample contains ~5000 haloes in the range 10^{11}-10^{14} M_sun. The profiles are parameterized by an NFW form with two parameters , an inner radius r_s and a virial radius r_v, and we define the halo concentration c_v = r_v/r_s. First, we find that, for a given halo mass, the redshift dependence of the median concentration is c_v ~ 1/(1+z), corresponding to a roughly constant r_s with redshift. We present an improved analytic treatment of halo formation that fits the measured relations between halo parameters and their redshift dependence. The implications are that high-redshift galaxies are predicted to be more extended and dimmer than expected before. Second, we find that the scatter in log(c_v) is ~0.18, corresponding to a scatter in maximum rotation velocities of dV/V ~ 0.12. We discuss implications for modelling the Tully-Fisher relation, which has a smaller reported intrinsic scatter. Third, haloes in dense environments tend to be more concentrated than isolated haloes. These results suggest that c_v is an essential parameter for the theory of galaxy modelling, and we briefly discuss implications for the universality of the Tully-Fisher relation, the formation of low surface brightness galaxies, and the origin of the Hubble sequence.
108 - E. Polisensky , M. Ricotti 2015
We use N-body simulations of dark matter haloes in cold dark matter (CDM) and a large set of different warm dark matter (WDM) cosmologies to demonstrate that the spherically averaged density profile of dark matter haloes has a shape that depends on t he power spectrum of matter perturbations. Density profiles are steeper in WDM but become shallower at scales less than one percent of the virial radius. Virialization isotropizes the velocity dispersion in the inner regions of the halo but does not erase the memory of the initial conditions in phase space. The location of the observed deviations from CDM in the density profile and in phase space can be directly related to the ratio between the halo mass and the filtering mass and are most evident in small mass haloes, even for a 34 keV thermal relic WDM. The rearrangement of mass within the haloes supports analytic models of halo structure that include angular momentum. We also find evidence of a dependence of the slope of the inner density profile in CDM cosmologies on the halo mass with more massive haloes exhibiting steeper profiles, in agreement with the model predictions and with previous simulation results. Our work complements recent studies of microhaloes near the filtering scale in CDM and strongly argue against a universal shape for the density profile.
The core-cusp problem is one of the controversial issues in the standard paradigm of $Lambda$ cold dark matter ($Lambda$CDM) theory. However, under the assumption of conventional spherical symmetry, the strong degeneracy among model parameters makes it unclear whether dwarf spheroidal (dSph) galaxies indeed have cored dark matter density profiles at the centers. In this work, we revisit this problem using non-spherical mass models, which have the advantage of being able to alleviate the degeneracy. Applying our mass models to the currently available kinematic data of the eight classical dSphs, we find that within finite uncertainties, most of these dSphs favor cusped central profiles rather than cored ones. In particular, Draco has a cusped dark matter halo with high probability even considering a prior bias. We also find the diversity of the inner slopes in their dark matter halos. To clarify the origin of this diversity, we investigate the relation between the inner dark matter density slope and stellar-to-halo mass ratio for the sample dSphs and find this relation is generally in agreement with the predictions from recent $Lambda$CDM and hydrodynamical simulations. We also find that the simulated subhalos have anti-correlation between the dark matter density at 150 pc and pericenter distance, which is consistent with the observed one. We estimate their astrophysical factors for dark matter indirect searches and circular velocity profiles, associated with huge uncertainties. To more precisely estimate their dark matter profiles, wide-field spectroscopic surveys for the dSphs are essential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا