ترغب بنشر مسار تعليمي؟ اضغط هنا

Fingerprints of the initial conditions on the density profiles of cold and warm dark matter haloes

68   0   0.0 ( 0 )
 نشر من قبل Emil Polisensky
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use N-body simulations of dark matter haloes in cold dark matter (CDM) and a large set of different warm dark matter (WDM) cosmologies to demonstrate that the spherically averaged density profile of dark matter haloes has a shape that depends on the power spectrum of matter perturbations. Density profiles are steeper in WDM but become shallower at scales less than one percent of the virial radius. Virialization isotropizes the velocity dispersion in the inner regions of the halo but does not erase the memory of the initial conditions in phase space. The location of the observed deviations from CDM in the density profile and in phase space can be directly related to the ratio between the halo mass and the filtering mass and are most evident in small mass haloes, even for a 34 keV thermal relic WDM. The rearrangement of mass within the haloes supports analytic models of halo structure that include angular momentum. We also find evidence of a dependence of the slope of the inner density profile in CDM cosmologies on the halo mass with more massive haloes exhibiting steeper profiles, in agreement with the model predictions and with previous simulation results. Our work complements recent studies of microhaloes near the filtering scale in CDM and strongly argue against a universal shape for the density profile.

قيم البحث

اقرأ أيضاً

189 - Darren Reed 2003
We use numerical simulations in a Lambda CDM cosmology to model density profiles in a set of 16 dark matter haloes with resolutions of up to 7 million particles within the virial radius. These simulations allow us to follow robustly the formation and evolution of the central cusp over a large mass range of 10^11 to 10^14 M_sun, down to approximately 0.5% of the virial radius, and from redshift 5 to the present. The cusp of the density profile is set at redshifts of 2 or greater and remains remarkably stable to the present time, when considered in non-comoving coordinates. We fit our haloes to a 2 parameter profile where the steepness of the asymptotic cusp is given by gamma, and its radial extent is described by the concentration, c_gamma. In our simulations, we find gamma = 1.4 - 0.08Log(M/M_*) for haloes of 0.01M_* to 1000M_*, with a large scatter of gamma ~ +/-0.3$; and c_gamma = 8*M/M_*^{-0.15}, with a large M/M_* dependent scatter roughly equal to +/- c_gamma. Our redshift zero haloes have inner slope parameters ranging approximately from r^{-1} to r^{-1.5}, with a median of roughly r^{-1.3}. This 2 parameter profile fit works well for all our halo types, whether or not they show evidence of a steep asymptotic cusp. We also model a cluster in power law cosmologies of P ~ k^n (n=0,-1,-2,-2.7). We find larger concentration radii and shallower cusps for steeper n. The minimum resolved radius is well described by the mean interparticle separation. The trend of steeper and more concentrated cusps for smaller $M/M_*$ haloes clearly shows that dwarf sized Lambda CDM haloes have, on average, significantly steeper density profiles within the inner few percent of the virial radius than inferred from recent observations. Code to reproduce this profile can be downloaded from http://www.icc.dur.ac.uk/~reed/profile.html
275 - A. Del Popolo 2009
In the present paper, we improve the Extended Secondary Infall Model (ESIM) of Williams et al. (2004) to obtain further insights on the cusp/core problem. The model takes into account the effect of ordered and random angular momentum, dynamical frict ion and baryon adiabatic contraction in order to obtain a secondary infall model more close to the collapse reality. The model is applied to structures on galactic scales (normal and dwarf spiral galaxies) and on cluster of galaxies scales. The results obtained suggest that angular momentum and dynamical friction are able, on galactic scales, to overcome the competing effect of adiabatic contraction eliminating the cusp. The NFW profile can be reobtained, in our model only if the system is constituted just by dark matter and the magnitude of angular momentum and dynamical friction are reduced with respect to the values predicted by the model itself. The rotation curves of four LSB galaxies from de Blok & Bosma (2002) are compared to the rotation curves obtained by the model in the present paper obtaining a good fit to the observational data. On scales smaller than $simeq 10^{11} h^{-1} M_{odot}$ the slope $alpha simeq 0$ and on cluster scales we observe a similar evolution of the dark matter density profile but in this case the density profile slope flattens to $alpha simeq 0.6$ for a cluster of $simeq 10^{14} h^{-1} M_{odot}$. The total mass profile, differently from that of dark matter, shows a central cusp well fitted by a NFW model.
(Abridged) We study the outer density profiles of dark matter haloes predicted by a generalized secondary infall model and observed in a N-body cosmological simulation of a Lambda CDM model. We find substantial systematic variations in shapes and con centrations of the halo profiles as well as a strong correlation of the profiles with the environment. In the N-body simulation, the average outer slope of the density profiles, beta (rhopropto r^{-beta}), of isolated haloes is approx 2.9; 68% of these haloes have values of beta between 2.5 and 3.8. Haloes in dense environments of clusters are more concentrated and exhibit a broad distribution of beta with values larger than for isolated haloes . Contrary to what one may expect, the haloes contained within groups and galaxy systems are less concentrated and have flatter outer density profiles than the isolated haloes. The concentration decreases with M_h, but its scatter for a given mass is substantial. The mass and circular velocity of the haloes are strongly correlated: M_h propto V_m^{alpha} with alpha ~ 3.3 (isolated) and ~3.5 (haloes in clusters). For M_h=10^12M_sun the rms deviations from these relations are Delta logM_h=0.12 and 0.18, respectively. Approximately 30% of the haloes are contained within larger haloes or have massive companions (larger than ~0.3 the mass of the current halo) within 3 virial radii. The remaining 70% of the haloes are isolated objects. The distribution of beta as well as the concentration-mass and M_h-V_m relations for the isolated haloes agree very well with the predictions of our seminumerical approach which is based on a generalization of the secondary infall model and on the extended Press-Schechter formalism.
We use a pair of high resolution N-body simulations implementing two dark matter models, namely the standard cold dark matter (CDM) cosmogony and a warm dark matter (WDM) alternative where the dark matter particle is a 1.5keV thermal relic. We combin e these simulations with the GALFORM semi-analytical galaxy formation model in order to explore differences between the resulting galaxy populations. We use GALFORM model variants for CDM and WDM that result in the same z=0 galaxy stellar mass function by construction. We find that most of the studied galaxy properties have the same values in these two models, indicating that both dark matter scenarios match current observational data equally well. Even in under-dense regions, where discrepancies in structure formation between CDM and WDM are expected to be most pronounced, the galaxy properties are only slightly different. The only significant difference in the local universe we find is in the galaxy populations of Local Volumes, regions of radius 1 to 8Mpc around simulated Milky Way analogues. In such regions our WDM model provides a better match to observed local galaxy number counts and is five times more likely than the CDM model to predict sub-regions within them that are as empty as the observed Local Void. Thus, a highly complete census of the Local Volume and future surveys of void regions could provide constraints on the nature of dark matter.
The recent detection of a 3.5 keV X-ray line from the centres of galaxies and clusters by Bulbul et al. (2014a) and Boyarsky et al. (2014a) has been interpreted as emission from the decay of 7 keV sterile neutrinos which could make up the (warm) dark matter (WDM). As part of the COpernicus COmplexio (COCO) programme, we investigate the properties of dark matter haloes formed in a high-resolution cosmological $N$-body simulation from initial conditions similar to those expected in a universe in which the dark matter consists of 7 keV sterile neutrinos. This simulation and its cold dark matter (CDM) counterpart have $sim13.4$bn particles, each of mass $sim 10^5, h^{-1} M_odot$, providing detailed information about halo structure and evolution down to dwarf galaxy mass scales. Non-linear structure formation on small scales ($M_{200}, leq, 2 times 10^9,h^{-1},M_odot$) begins slightly later in COCO-Warm than in COCO-Cold. The halo mass function at the present day in the WDM model begins to drop below its CDM counterpart at a mass $sim 2 times 10^{9},h^{-1},M_odot$ and declines very rapidly towards lower masses so that there are five times fewer haloes of mass $M_{200}= 10^{8},h^{-1},M_odot$ in COCO-Warm than in COCO-Cold. Halo concentrations on dwarf galaxy scales are correspondingly smaller in COCO-Warm, and we provide a simple functional form that describes its evolution with redshift. The shapes of haloes are similar in the two cases, but the smallest haloes in COCO-Warm rotate slightly more slowly than their CDM counterparts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا