ﻻ يوجد ملخص باللغة العربية
We present 27 geodetic VLBI maps of OJ 287 obtained from the archive of the Washington correlator. The observations presented here were made between 1990 October and 1996 December. During this period a sequence of six superluminal components has been identified. We measured the proper motion of these components to be approximately 0.5 mas/yr, which is about twice as high as that seen in previous VLBI observations. These results imply a higher component ejection rate than previously observed, in good agreement with the observed occurrences of radio outbursts. We have examined a possible connection between VLBI components and optical flares in the framework of a binary black hole system.
Binary black hole (BH) central engine description for the unique blazar OJ 287 predicted that the next secondary BH impact-induced bremsstrahlung flare should peak on 2019 July 31. This prediction was based on detailed general relativistic modeling o
The modern Very Long Baseline Interferometry (VLBI) relativistic delay model, as documented in the IERS Conventions refers to the time epoch when the signal passes one of two stations of an interferometer baseline (selected arbitrarily from the pair
Our project MOMO (Multiwavelength observations and modelling of OJ 287) consists of dedicated, dense, long-term flux and spectroscopic monitoring and deep follow-up observations of the blazar OJ 287 at >13 frequencies from the radio to the X-ray band
In the binary black hole model of OJ 287 the secondary black hole orbits a much more massive primary, and impacts on the primary accretion disk at predictable times. We update the parameters of the disk, the viscosity $alpha$ and the mass accretion r
We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical