ﻻ يوجد ملخص باللغة العربية
The modern Very Long Baseline Interferometry (VLBI) relativistic delay model, as documented in the IERS Conventions refers to the time epoch when the signal passes one of two stations of an interferometer baseline (selected arbitrarily from the pair of stations and called the reference station, or station 1). This model consists of the previous correlation procedure used before the year 2002. However, since 2002 a new correlation procedure that produces the VLBI group delays referring to the time epoch of signal passage at the geocenter has been used. A corresponding correction to the conventional VLBI model delay has to be introduced. However, this correction has not been thoroughly presented in peer reviewed journals, and different approaches are used at the correlators to calculate the final group delays officially published in the IVS database. This may cause an inconsistency up to 6 ps for ground-based VLBI experiments between the group delay obtained by the correlator and the geometrical model delay from the IERS Conventions used in data analysis software. Moreover, a miscalculation of the signal arrival moment to the reference station could result a larger modelling error (up to 50 ps). The paper presents the justification of the correction due to transition between two epochs elaborated from the Lorentz transformation, and the approach to model the uncertainty of the calculation of the signal arrival moment. The both changes are particularly essential for upcoming broadband technology geodetic VLBI observations.
We present 27 geodetic VLBI maps of OJ 287 obtained from the archive of the Washington correlator. The observations presented here were made between 1990 October and 1996 December. During this period a sequence of six superluminal components has been
Geodetic Very Long Baseline Interferometry (VLBI) measures the group delay in the barycentric reference frame. As the Earth is orbiting around the Solar system barycentre with the velocity $V$ of 30 km/s, VLBI proves to be a handy tool to detect the
COSMOGRAIL is a long-term photometric monitoring of gravitationally lensed QSOs aimed at implementing Refsdals time-delay method to measure cosmological parameters, in particular H0. Given long and well sampled light curves of strongly lensed QSOs, t
We report the results of a successful 7 hour 1.4 GHz VLBI experiment using two new stations, ASKAP-29 located in Western Australia and WARK12M located on the North Island of New Zealand. This was the first geodetic VLBI observing session with the par
Very-long-baseline interferometry (VLBI) at frequencies above 230 GHz with Earth-diameter baselines gives spatial resolution finer than the ${sim}50 mu$as shadow of the supermassive black hole at the Galactic Center, Sagittarius A* (Sgr A*). Imaging