ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinearity and stochasticity in the density--velocity relation

48   0   0.0 ( 0 )
 نشر من قبل Francis Bernardeau
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Bernardeau




اسأل ChatGPT حول البحث

We present results of the investigations of the statistical properties of a joint density and velocity divergence probability distribution function (PDF) in the mildly non-linear regime. For that purpose we use both perturbation theory results, extended here for a top-hat filter, and numerical simulations. In particular we derive the quantitative (complete as possible up to third order terms) and qualitative predictions for constrained averages and constrained dispersions -- which describe the nonlinearities and the stochasticity properties beyond the linear regime -- and compare them against numerical simulations. We find overall a good agreement for constrained averages; however, the agreement for constrained dispersions is only qualitative. Scaling relations for the Omega-dependence of these quantities are satisfactory reproduced. Guided by our analytical and numerical results, we finally construct a robust phenomenological description of the joint PDF in a closed analytic form. The good agreement of our formula with results of N-body simulations for a number of cosmological parameters provides a sound validation of the presented approach. Our results provide a basis for a potentially powerful tool with which it is possible to analyze galaxy survey data in order to test the gravitational instability paradigm beyond the linear regime and put useful constraints on cosmological parameters. In particular we show how the nonlinearity in the density--velocity relation can be used to break the so-called Omega-bias degeneracy in cosmic density-velocity comparisons.



قيم البحث

اقرأ أيضاً

We study the cosmic velocity-density relation using the spherical collapse model (SCM) as a proxy to non-linear dynamics. Although the dependence of this relation on cosmological parameters is known to be weak, we retain the density parameter Omega_m in SCM equations, in order to study the limit Omega_m -> 0. We show that in this regime the considered relation is strictly linear, for arbitrary values of the density contrast, on the contrary to some claims in the literature. On the other hand, we confirm that for realistic values of Omega_m the exact relation in the SCM is well approximated by the classic formula of Bernardeau (1992), both for voids (delta<0) and for overdensities up to delta ~ 3. Inspired by this fact, we find further analytic approximations to the relation for the whole range delta from -1 to infinity. Our formula for voids accounts for the weak Omega_m-dependence of their maximal rate of expansion, which for Omega_m < 1 is slightly smaller that 3/2. For positive density contrasts, we find a simple relation div v = 3 H_0 (Omega_m)^(0.6) [ (1+delta)^(1/6) - (1+delta)^(1/2) ], that works very well up to the turn-around (i.e. up to delta ~ 13.5 for Omega_m = 0.25 and neglected Omega_Lambda). Having the same second-order expansion as the formula of Bernardeau, it can be regarded as an extension of the latter for higher density contrasts. Moreover, it gives a better fit to results of cosmological numerical simulations.
116 - V. Balakrishnan , 2001
We consider the motion of a test particle in a one-dimensional system of equal-mass point particles. The test particle plays the role of a microscopic piston that separates two hard-point gases with different concentrations and arbitrary initial velo city distributions. In the homogeneous case when the gases on either side of the piston are in the same macroscopic state, we compute and analyze the stationary velocity autocorrelation function C(t). Explicit expressions are obtained for certain typical velocity distributions, serving to elucidate in particular the asymptotic behavior of C(t). It is shown that the occurrence of a non-vanishing probability mass at zero velocity is necessary for the occurrence of a long-time tail in C(t). The conditions under which this is a $t^{-3}$ tail are determined. Turning to the inhomogeneous system with different macroscopic states on either side of the piston, we determine its effective diffusion coefficient from the asymptotic behavior of the variance of its position, as well as the leading behavior of the other moments about the mean. Finally, we present an interpretation of the effective noise arising from the dynamics of the two gases, and thence that of the stochastic process to which the position of any particle in the system reduces in the thermodynamic limit.
We report a tight linear relation between the HI circular velocity measured at 6 $R_{rm e}$ and the stellar velocity dispersion measured within 1 $R_{rm e}$ for a sample of 16 early-type galaxies with stellar mass between $10^{10}$ and $10^{11}$ $mat hrm{M}_odot$. The key difference from previous studies is that we only use spatially resolved $v_mathrm{circ}$(HI) measurements obtained at large radius for a sizeable sample of objects. We can therefore link a kinematical tracer of the gravitational potential in the dark-matter dominated outer regions of galaxies with one in the inner regions, where baryons control the distribution of mass. We find that $v_mathrm{circ}$(HI) = 1.33 $sigma_mathrm{e}$ with an observed scatter of just 12 percent. This indicates a strong coupling between luminous and dark matter from the inner- to the outer regions of early-type galaxies, analogous to the situation in spirals and dwarf irregulars. The $v_mathrm{circ}$(HI)-$sigma_mathrm{e}$ relation is shallower than those based on $v_mathrm{circ}$ measurements obtained from stellar kinematics and modelling at smaller radius, implying that vcirc declines with radius -- as in bulge-dominated spirals. Indeed, the value of $v_mathrm{circ}$(HI) is typically 25 percent lower than the maximum $v_mathrm{circ}$ derived at $sim0.2 R_mathrm{e}$ from dynamical models. Under the assumption of power-law total density profiles $rho propto r^{-gamma}$, our data imply an average logarithmic slope $langlegammarangle=2.18pm0.03$ across the sample, with a scatter of 0.11 around this value. The average slope and scatter agree with recent results obtained from stellar kinematics alone for a different sample of early-type galaxies.
108 - I. Zhuravleva 2014
We address the problem of evaluating the power spectrum of the velocity field of the ICM using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed cluster s there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: $(deltarho_k/rho)^2 = eta_1^2 (V_{1,k}/c_s)^2$, where $deltarho_k/rho$ is the spectral amplitude of the density perturbations at wave number $k$, $V_{1,k}^2=V_k^2/3$ is the mean square component of the velocity field, $c_s$ is the sound speed, and $eta_1$ is a dimensionless constant of order unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find $eta_1approx 1 pm 0.3$. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters, across a wide range of scales.
77 - E. M. Corsini 2005
We analyzed a sample of high and low surface brightness (HSB and LSB) disc galaxies and elliptical galaxies to investigate the correlation between the circular velocity (Vc) and the central velocity dispersion (sigma). We better defined the previous Vc-sigma correlation for HSB and elliptical galaxies, especially at the lower end of the sigma values. Elliptical galaxies with Vc based on dynamical models or directly derived from the HI rotation curves follow the same relation as the HSB galaxies in the V-sigma plane. On the contrary, the LSB galaxies follow a different relation, since most of them show either higher Vc (or lower sigma) with respect to the HSB galaxies. This argues against the relevance of baryon collapse in the radial density profile of the dark matter haloes of LSB galaxies. Moreover, if the Vc-sigma relation is equivalent to one between the mass of the dark matter halo and that of the supermassive black hole, these results suggest that the LSB galaxies host a supermassive black hole with a smaller mass compared to HSB galaxies of equal dark matter halo. On the other hand, if the fundamental correlation of SMBH mass is with the halo Vc, then LSBs should have larger black hole masses for given bulge sigma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا