ترغب بنشر مسار تعليمي؟ اضغط هنا

The relation between circular velocity and central velocity dispersion in low surface brightness galaxies

78   0   0.0 ( 0 )
 نشر من قبل Enrico Maria Corsini
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. M. Corsini




اسأل ChatGPT حول البحث

We analyzed a sample of high and low surface brightness (HSB and LSB) disc galaxies and elliptical galaxies to investigate the correlation between the circular velocity (Vc) and the central velocity dispersion (sigma). We better defined the previous Vc-sigma correlation for HSB and elliptical galaxies, especially at the lower end of the sigma values. Elliptical galaxies with Vc based on dynamical models or directly derived from the HI rotation curves follow the same relation as the HSB galaxies in the V-sigma plane. On the contrary, the LSB galaxies follow a different relation, since most of them show either higher Vc (or lower sigma) with respect to the HSB galaxies. This argues against the relevance of baryon collapse in the radial density profile of the dark matter haloes of LSB galaxies. Moreover, if the Vc-sigma relation is equivalent to one between the mass of the dark matter halo and that of the supermassive black hole, these results suggest that the LSB galaxies host a supermassive black hole with a smaller mass compared to HSB galaxies of equal dark matter halo. On the other hand, if the fundamental correlation of SMBH mass is with the halo Vc, then LSBs should have larger black hole masses for given bulge sigma.

قيم البحث

اقرأ أيضاً

126 - A. Pizzella 2005
In order to investigate the correlation between the circular velocity Vc and the central velocity dispersion of the spheroidal component sigma_c, we analyzed these quantities for a sample of 40 high surface brightness disc galaxies (hereafter HSB), 8 giant low surface brightness spiral galaxies (hereafter LSB), and 24 elliptical galaxies characterized by flat rotation curves. We find that the Vc-sigma_c relation is descri ed by a linear law out to velocity dispersions as low as sigma_c~50km/s, while in previous works a power law was adopted for galaxies with sigma_c>80k/ms. Elliptical galaxies with Vc based on dynamical models or directly derived from the HI rotation curves follow the same relation as the HSB galaxies in the Vc-sigma_c plane. On the contrary, the LSB galaxies follow a different relation, since most of them show either higher Vc (or lower sigma_c) with respect to the HSB galaxies. This argues against the relevance of baryon collapse in the radial density profile of the dark matter haloes of LSB galaxies. (abridged)
We report a tight linear relation between the HI circular velocity measured at 6 $R_{rm e}$ and the stellar velocity dispersion measured within 1 $R_{rm e}$ for a sample of 16 early-type galaxies with stellar mass between $10^{10}$ and $10^{11}$ $mat hrm{M}_odot$. The key difference from previous studies is that we only use spatially resolved $v_mathrm{circ}$(HI) measurements obtained at large radius for a sizeable sample of objects. We can therefore link a kinematical tracer of the gravitational potential in the dark-matter dominated outer regions of galaxies with one in the inner regions, where baryons control the distribution of mass. We find that $v_mathrm{circ}$(HI) = 1.33 $sigma_mathrm{e}$ with an observed scatter of just 12 percent. This indicates a strong coupling between luminous and dark matter from the inner- to the outer regions of early-type galaxies, analogous to the situation in spirals and dwarf irregulars. The $v_mathrm{circ}$(HI)-$sigma_mathrm{e}$ relation is shallower than those based on $v_mathrm{circ}$ measurements obtained from stellar kinematics and modelling at smaller radius, implying that vcirc declines with radius -- as in bulge-dominated spirals. Indeed, the value of $v_mathrm{circ}$(HI) is typically 25 percent lower than the maximum $v_mathrm{circ}$ derived at $sim0.2 R_mathrm{e}$ from dynamical models. Under the assumption of power-law total density profiles $rho propto r^{-gamma}$, our data imply an average logarithmic slope $langlegammarangle=2.18pm0.03$ across the sample, with a scatter of 0.11 around this value. The average slope and scatter agree with recent results obtained from stellar kinematics alone for a different sample of early-type galaxies.
134 - P. Popesso , A. Biviano 2006
Some previous investigations have found that the fraction (f_AGN) of active galactic nuclei (AGNs) is lower in clusters than in the field. This can result from the suppression of galaxy-galaxy mergers in high-velocity dispersion (sigma_v) clusters, i f the formation and/or fueling of AGNs is directly related to the merging process. We investigate the existence of a relation between f_AGN and sigma_v in galaxy clusters in order to shed light on the formation and evolution processes of AGNs and cluster galaxies. Using data from the Sloan Digital Sky Survey we determine f_AGN and sigma_v for the clusters in two samples, extracted from the catalogs of Popesso et al. (2006a) and Miller et al. (2005), and excluding clusters with significant evidence for substructures. We find a significant f_AGN-sigma_v anti-correlation. Clusters with sigma_v lower and, respectively, higher than 500 km/s have AGN fractions of $0.21 pm 0.01$ and $0.15 pm 0.01$, on average. The f_AGN-sigma_v relation can be described by a model that assumes f_AGN is proportional to the galaxies merging rate, plus a constant. Since f_AGN increases with decreasing sigma_v, AGNs are likely to have played a significant role in heating the intra-cluster medium and driving galaxy evolution in cluster precursors and groups.
305 - G. Verdoes Kleijn 2003
The majority of nearby early-type galaxies contains detectable amounts of emission-line gas at their centers. The emission-line ratios and gas kinematics potentially form a valuable diagnostic of the nuclear activity and gravitational potential well. The observed central gas velocity dispersion often exceeds the stellar velocity dispersion. This could be due to either the gravitational potential of a black hole or turbulent shocks in the gas. Here we try to discriminate between these two scenarios.
We present an updated investigation of the relation between large scale disk circular velocity, v_c, and bulge velocity dispersion, sigma_c. New bulge velocity dispersions are measured for a sample of 11 low surface brightness (LSB) and 7 high surfac e brightness (HSB) spiral galaxies for which v_c is known from published optical or HI rotation curves. We find that, while LSB galaxies appear to define the upper envelope of the region occupied by HSB galaxies (having relatively larger v_c for any given sigma_c), the distinction between LSB and HSB galaxies in the v_c-sigma_c plane becomes less pronounced for sigma_c <= 80 km/s. We conclude that either the scatter of the v_c-sigma_c relation is a function of v_c (and hence galaxy mass) or that the character of the v_c-sigma_c relation changes at v_c ~ 80 km/s. Some inplications of our findings are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا