ترغب بنشر مسار تعليمي؟ اضغط هنا

The relation between gas density and velocity power spectra in galaxy clusters: qualitative treatment and cosmological simulations

100   0   0.0 ( 0 )
 نشر من قبل Irina Zhuravleva Vladimirovna
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. Zhuravleva




اسأل ChatGPT حول البحث

We address the problem of evaluating the power spectrum of the velocity field of the ICM using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: $(deltarho_k/rho)^2 = eta_1^2 (V_{1,k}/c_s)^2$, where $deltarho_k/rho$ is the spectral amplitude of the density perturbations at wave number $k$, $V_{1,k}^2=V_k^2/3$ is the mean square component of the velocity field, $c_s$ is the sound speed, and $eta_1$ is a dimensionless constant of order unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find $eta_1approx 1 pm 0.3$. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters, across a wide range of scales.


قيم البحث

اقرأ أيضاً

82 - D. Eckert , M. Gaspari , F. Vazza 2017
Giant radio halos are Mpc-scale diffuse radio sources associated with the central regions of galaxy clusters. The most promising scenario to explain the origin of these sources is that of turbulent re-acceleration, in which MeV electrons injected thr oughout the formation history of galaxy clusters are accelerated to higher energies by turbulent motions mostly induced by cluster mergers. In this Letter, we use the amplitude of density fluctuations in the intracluster medium as a proxy for the turbulent velocity and apply this technique to a sample of 51 clusters with available radio data. Our results indicate a segregation in the turbulent velocity of radio halo and radio quiet clusters, with the turbulent velocity of the former being on average higher by about a factor of two. The velocity dispersion recovered with this technique correlates with the measured radio power through the relation $P_{rm radio}proptosigma_v^{3.3pm0.7}$, which implies that the radio power is nearly proportional to the turbulent energy rate. Our results provide an observational confirmation of a key prediction of the turbulent re-acceleration model and possibly shed light on the origin of radio halos.
We investigate the dependence of stellar population properties of galaxies on group dynamical stage for a subsample of Yang catalog. We classify groups according to their galaxy velocity distribution into Gaussian (G) and Non-Gaussian (NG). Using two totally independent approaches we have shown that our measurement of Gaussianity is robust and reliable. Our sample covers Yangs groups in the redshift range 0.03 $leq$ z $leq$ 0.1 having mass $geq$ 10$^{14} rm M_{odot}$. The new method, Hellinger Distance (HD), to determine whether a group has a velocity distribution Gaussian or Non-Gaussian is very effective in distinguishing between the two families. NG groups present halo masses higher than the G ones, confirming previous findings. Examining the Skewness and Kurtosis of the velocity distribution of G and NG groups, we find that faint galaxies in NG groups are mainly infalling for the first time into the groups. We show that considering only faint galaxies in the outskirts, those in NG groups are older and more metal rich than the ones in G groups. Also, examining the Projected Phase Space of cluster galaxies we see that bright and faint galactic systems in G groups are in dynamical equilibrium which does not seem to be the case in NG groups. These findings suggest that NG systems have a higher infall rate, assembling more galaxies which experienced preprocessing before entering the group.
185 - I. Zhuravleva 2017
We present the statistical analysis of X-ray surface brightness and gas density fluctuations in cool cores of ten, nearby and bright galaxy clusters that have deep Chandra observations and show observational indications of radio-mechanical AGN feedba ck. Within the central parts of cool cores the total variance of fluctuations is dominated by isobaric and/or isothermal fluctuations on spatial scales ~ 10-60 kpc, which are likely associated with slow gas motions and bubbles of relativistic plasma. Adiabatic fluctuations associated with weak shocks constitute less than 10 per cent of the total variance in all clusters. The typical amplitude of density fluctuations is small, ~ 10 per cent or less on scales of ~ 10-15 kpc. Subdominant contribution of adiabatic fluctuations and small amplitude of density fluctuations support a model of gentle AGN feedback as opposed to periodically explosive scenarios which are implemented in some numerical simulations. Measured one-component velocities of gas motions are typically below 100-150 km/s on scales < 50 kpc, and can be up to ~ 300 km/s on ~ 100 kpc scales. The non-thermal energy is < 12 per cent of the thermal energy. Regardless of the source that drives these motions the dissipation of the energy in such motions provides heat that is sufficient to balance radiative cooling on average, albeit the uncertainties are large. Presented results here support previous conclusions based on the analysis of the Virgo and Perseus Clusters, and agree with the Hitomi measurements. With next generation observatories like Athena and Lynx, these techniques will be yet more powerful.
Recent X-ray observations of galaxy clusters show that the distribution of intra-cluster medium (ICM) metallicity is remarkably uniform in space and time. In this paper, we analyse a large sample of simulated objects, from poor groups to rich cluster s, to study the dependence of the metallicity and related quantities on the mass of the systems. The simulations are performed with an improved version of the Smoothed-Particle-Hydrodynamics texttt{GADGET-3} code and consider various astrophysical processes including radiative cooling, metal enrichment and feedback from stars and active galactic nuclei (AGN). The scaling between the metallicity and the temperature obtained in the simulations agrees well in trend and evolution with the observational results obtained from two data samples characterised by a wide range of masses and a large redshift coverage. We find that the iron abundance in the cluster core ($r<0.1R_{500}$) does not correlate with the temperature nor presents a significant evolution. The scale invariance is confirmed when the metallicity is related directly to the total mass. The slope of the best-fitting relations is shallow ($betasim-0.1$) in the innermost regions ($r<0.5R_{500}$) and consistent with zero outside. We investigate the impact of the AGN feedback and find that it plays a key role in producing a constant value of the outskirts metallicity from groups to clusters. This finding additionally supports the picture of early enrichment.
Though theoretically expected, the charge exchange emission from galaxy clusters has not yet been confidently detected. Accumulating hints were reported recently, including a rather marginal detection with the Hitomi data of the Perseus cluster. As s uggested in Gu et al. (2015), a detection of charge exchange line emission from galaxy clusters would not only impact the interpretation of the newly-discovered 3.5 keV line, but also open up a new research topic on the interaction between hot and cold matter in clusters. We aim to perform the most systematic search for the O VIII charge exchange line in cluster spectra using the RGS on board XMM. We introduce a sample of 21 clusters observed with the RGS. The dominating thermal plasma emission is modeled and subtracted with a two-temperature CIE component, and the residuals are stacked for the line search. The systematic uncertainties in the fits are quantified by refitting the spectra with a varying continuum and line broadening. By the residual stacking, we do find a hint of a line-like feature at 14.82 A, the characteristic wavelength expected for oxygen charge exchange. This feature has a marginal significance of 2.8 sigma, and the average equivalent width is 2.5E-4 keV. We further demonstrate that the putative feature can be hardly affected by the systematic errors from continuum modelling and instrumental effects, or the atomic uncertainties of the neighbouring thermal lines. Assuming a realistic temperature and abundance pattern, the physical model implied by the possible oxygen line agrees well with the theoretical model proposed previously to explain the reported 3.5 keV line. If the charge exchange source indeed exists, we would expect that the oxygen abundance is potentially overestimated by 8-22% in previous X-ray measurements which assumed pure thermal lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا