ﻻ يوجد ملخص باللغة العربية
The absolute fluxes of the cosmic-ray antiprotons at solar minimum are measured in the energy range 0.18 to 1.4 GeV, based on 43 events unambiguously detected in BESS 95 data. The resultant energy spectrum appears to be flat below 1 GeV, compatible with a possible admixture of primary antiproton component with a soft energy spectrum, while the possibility of secondary antiprotons alone explaining the data cannot be excluded with the present accuracy. Further improvement of statistical accuracy and extension of the energy range are planned in future BESS flights.
The GAPS experiment is foreseen to carry out a dark matter search by measuring low-energy cosmic-ray antideuterons and antiprotons with a novel detection approach. It will provide a new avenue to access a wide range of different dark matter models an
The energy spectrum of cosmic-ray antiprotons from 0.17 to 3.5 GeV has been measured using 7886 antiprotons detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good
The goal of the AE$mathrm{bar{g}}$IS experiment at the Antiproton Decelerator (AD) at CERN, is to measure directly the Earths gravitational acceleration on antimatter. To achieve this goal, the AE$mathrm{bar{g}}$IS collaboration will produce a pulsed
The existence of a significant flux of antiprotons confined to Earths magnetosphere has been considered in several theoretical works. These antiparticles are produced in nuclear interactions of energetic cosmic rays with the terrestrial atmosphere an
We report on a new measurement of the cosmic ray (CR) electron and positron spectra in the energy range of 20 MeV -- 1 GeV. The data were taken during the first flight of the balloon-borne spectrometer AESOP-Lite (Anti Electron Sub Orbital Payload),