ترغب بنشر مسار تعليمي؟ اضغط هنا

The discovery of geomagnetically trapped cosmic ray antiprotons

116   0   0.0 ( 0 )
 نشر من قبل Alessandro Bruno
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The existence of a significant flux of antiprotons confined to Earths magnetosphere has been considered in several theoretical works. These antiparticles are produced in nuclear interactions of energetic cosmic rays with the terrestrial atmosphere and accumulate in the geomagnetic field at altitudes of several hundred kilometers. A contribution from the decay of albedo antineutrons has been hypothesized in analogy to proton production by neutron decay, which constitutes the main source of trapped protons at energies above some tens of MeV. This Letter reports the discovery of an antiproton radiation belt around the Earth. The trapped antiproton energy spectrum in the South Atlantic Anomaly (SAA) region has been measured by the PAMELA experiment for the kinetic energy range 60--750 MeV. A measurement of the atmospheric sub-cutoff antiproton spectrum outside the radiation belts is also reported. PAMELA data show that the magnetospheric antiproton flux in the SAA exceeds the cosmic-ray antiproton flux by three orders of magnitude at the present solar minimum, and exceeds the sub-cutoff antiproton flux outside radiation belts by four orders of magnitude, constituting the most abundant source of antiprotons near the Earth.

قيم البحث

اقرأ أيضاً

Global fits of primary and secondary cosmic-ray (CR) fluxes measured by AMS-02 have great potential to study CR propagation models and search for exotic sources of antimatter such as annihilating dark matter (DM). Previous studies of AMS-02 antiproto ns revealed a possible hint for a DM signal which, however, could be affected by systematic uncertainties. To test the robustness of such a DM signal, in this work we systematically study two important sources of uncertainties: the antiproton production cross sections needed to calculate the source spectra of secondary antiprotons and the potential correlations in the experimental data, so far not provided by the AMS-02 Collaboration. To investigate the impact of cross-section uncertainties we perform global fits of CR spectra including a covariance matrix determined from nuclear cross-section measurements. As an alternative approach, we perform a joint fit to both the CR and cross-section data. The two methods agree and show that cross-section uncertainties have a small effect on the CR fits and on the significance of a potential DM signal, which we find to be at the level of $3sigma$. Correlations in the data can have a much larger impact. To illustrate this effect, we determine possible benchmark models for the correlations in a data-driven method. The inclusion of correlations strongly improves the constraints on the propagation model and, furthermore, enhances the significance of the DM signal up to above $5sigma$. Our analysis demonstrates the importance of providing the covariance of the experimental data, which is needed to fully exploit their potential.
79 - Jan Heisig 2020
Cosmic-ray antiprotons are a powerful tool for astroparticle physics. While the bulk of measured antiprotons is consistent with a secondary origin, the precise data of the AMS-02 experiment provides us with encouraging prospects to search for a subdo minant primary component, e.g. from dark matter. In this brief review, we discuss recent limits on heavy dark matter as well as a tentative signal from annihilation of dark matter with a mass $lesssim 100$ GeV. We emphasize the special role of systematic errors that can affect the signal. In particular, we discuss recent progress in the modeling of secondary production cross sections and correlated errors in the AMS-02 data, the dominant ones originating from uncertainties in the cross sections for cosmic-ray absorption in the detector.
The interpretation of data from indirect detection experiments searching for dark matter annihilations requires computationally expensive simulations of cosmic-ray propagation. In this work we present a new method based on Recurrent Neural Networks t hat significantly accelerates simulations of secondary and dark matter Galactic cosmic ray antiprotons while achieving excellent accuracy. This approach allows for an efficient profiling or marginalisation over the nuisance parameters of a cosmic ray propagation model in order to perform parameter scans for a wide range of dark matter models. We identify importance sampling as particularly suitable for ensuring that the network is only evaluated in well-trained parameter regions. We present resulting constraints using the most recent AMS-02 antiproton data on several models of Weakly Interacting Massive Particles. The fully trained networks are released as DarkRayNet together with this work and achieve a speed-up of the runtime by at least two orders of magnitude compared to conventional approaches.
Data from the PAMELA satellite experiment were used to perform a detailed measurement of under-cutoff protons at low Earth orbits. On the basis of a trajectory tracing approach using a realistic description of the magnetosphere, protons were classifi ed into geomagnetically trapped and re-entrant albedo. The former include stably-trapped protons in the South Atlantic Anomaly, which were analyzed in the framework of the adiabatic theory, investigating energy spectra, spatial and angular distributions; results were compared with the predictions of the AP8 and the PSB97 empirical trapped models. The albedo protons were classified into quasi-trapped, concentrating in the magnetic equatorial region, and un-trapped, spreading over all latitudes and including both short-lived (precipitating) and long-lived (pseudo-trapped) components. Features of the penumbra region around the geomagnetic cutoff were investigated as well. PAMELA observations significantly improve the characterization of the high energy proton populations in near Earth orbits.
152 - G. Di Sciascio 2014
The ARGO-YBJ detector, located at high altitude in the Cosmic Ray Observatory of Yangbajing in Tibet (4300 m asl, about 600 g/cm2 of atmospheric depth) provides the opportunity to study, with unprecedented resolution, the cosmic ray physics in the pr imary energy region between 10^{12} and 10^{16} eV. The preliminary results of the measurement of all-particle and light-component (i.e. protons and helium) energy spectra between approximately 5 TeV and 5 PeV are reported and discussed. The study of such energy region is particularly interesting because not only it allows a better understanding of the so called knee of the energy spectrum and of its origin, but also provides a powerful cross-check among very different experimental techniques. The comparison between direct measurements by balloons/satellites and the results by surface detectors, implying the knowledge of shower development in the atmosphere, also allows to test the hadronic interaction models currently used for understanding particle and cosmic ray physics up the highest energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا