ﻻ يوجد ملخص باللغة العربية
The goal of the AE$mathrm{bar{g}}$IS experiment at the Antiproton Decelerator (AD) at CERN, is to measure directly the Earths gravitational acceleration on antimatter. To achieve this goal, the AE$mathrm{bar{g}}$IS collaboration will produce a pulsed, cold (100 mK) antihydrogen beam with a velocity of a few 100 m/s and measure the magnitude of the vertical deflection of the beam from a straight path. The final position of the falling antihydrogen will be detected by a position sensitive detector. This detector will consist of an active silicon part, where the annihilations take place, followed by an emulsion part. Together, they allow to achieve 1$%$ precision on the measurement of $bar{g}$ with about 600 reconstructed and time tagged annihilations. We present here, to the best of our knowledge, the first direct measurement of antiproton annihilation in a segmented silicon sensor, the first step towards designing a position sensitive silicon detector for the AE$mathrm{bar{g}}$IS experiment. We also present a first comparison with Monte Carlo simulations (GEANT4) for antiproton energies below 5 MeV
The in-beam tests of two Si pixel type TRACE detectors have been performed at Laboratori Nazionali di Legnaro (Italy). The aim was to investigate the possibility of identifying heavy-ion reactions products with mass A~10 at low kinetic energy, i.e.,
We set up a plane wave impulse approximation (PWIA) formalism for the analysis of the annihilation cross sections of antinucleons on nuclear targets at very low momenta (below 100 MeV/c), where semiclassical approximations cant be applied. Since, as
Silicon photomultipliers (SiPMs) have a low radioactivity, compact geometry, low operation voltage, and reasonable photo-detection efficiency for vacuum ultraviolet light (VUV). Therefore it has the potential to replace photomultiplier tubes (PMTs) f
The thermal transport in partially trenched silicon nitride membranes has been studied in the temperature range from 0.3 to 0.6 K, with the transition edge sensor (TES), the sole source of membrane heating. The test configuration consisted of Mo/Au T
A photon-counting silicon strip detector with two energy thresholds was investigated for spectral X-ray imaging in a mammography system. Preliminary studies already indicate clinical benefit of the detector, and the purpose of the present study is op