ﻻ يوجد ملخص باللغة العربية
Several classes of stars (most notably O and B main-sequence stars, as well as accreting white dwarfs and neutron stars) rotate quite rapidly, at spin frequencies greater than the typical g-mode frequencies. We discuss how rapid rotation modifies the $kappa$-mechanism excitation and observability of g-mode oscillations. We find that, by affecting the timescale match between the mode period and the thermal time at the driving zone, rapid rotation stabilizes some of the g-modes that are excited in a non-rotating star, and, conversely, excites g-modes that are damped in absence of rotation. The fluid velocities and temperature perturbations are strongly concentrated near the equator for most g-modes in rapidly rotating stars, which means that a favorable viewing angle may be required to observe the pulsations. Moreover, the stability of modes of the same $l$ but different $m$ is affected differently by rotation. We illustrate this by considering g-modes in Slowly Pulsating B-type stars as a function of the rotation rate.
For the first time nonradial oscillations of superfluid nonrotating stars are self-consistently studied at finite stellar temperatures. We apply a realistic equation of state and realistic density dependent model of critical temperature of neutron an
Radial and nonradial oscillations offer the opportunity to investigate the interior properties of stars. We use 2D stellar models and a 2D finite difference integration of the linearized pulsation equations to calculate non-radial oscillations. This
Detection of solar gravity modes remains a major challenge to our understanding of the innerparts of the Sun. Their frequencies would enable the derivation of constraints on the core physical properties while their amplitudes can put severe constrain
We present the identification of very low frequency g modes in the asymptotic regime and two important parameters that have long been waited for: the core rotation rate, and the asymptotic equidistant period spacing of these g modes. The GOLF instrum
We use the traditional approximation to describe oscillations with frequencies comparable to the angular rotation rate. Validity of this approximation in application to main-sequence B stars is discussed. Numerical results regarding mode stability an